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One-slide summary

• Streamwise vortices occur in fluid flow over surface 
with crossing-wave pattern.

• Kinematically equivalent to Langmuir circulation (the 
«CL1» mechanism, Craik 1970).

• Analytical theory presented for Langmuir rolls during 
• the early onset, and
• the final, steady-state.

• Explicit expressions when velocity profile is a power 
law   U(z) = zq.

• Confirmed by Lattice-Boltzmann simulations.



Introduction

• Full details of this work may be found in the forthcoming paper (arXiv)



Introduction

• Conventional Langmuir circulation

• Occurs due to interaction of waves and near-surface shear1

• Observable as «windrows» on surface, where foam etc gathers in 
downwelling areas.

• Important contributor to mixing in the upper ocean2.

• Neither wind nor surface waves are necessary

• The Craik-Leibovich mechanisms are purely kinematic interaction 
between mean shear and wavy fluid motion.

1 S. Leibovich, Annu. Rev. Fluid Mech. 15 391-427 (1983)
2 S. E. Belcher et al., Geophys. Res. Lett. 39 L18605 (2012)

Conventional Langmuir rolls due to crossing 
waves atop a shear current1 (CL1 mechanism)

Langmuir rolls due to boundary layer over a criss-cross 
wavy bottom. (Also CL1 mechanism)



Theory (outline)

• Follows roughly the procedure of Craik 19701. See our manuscript for full 
details.

• The wavy boundary introduces perturbations to the mean shear profile, 
treated up to second order in the wall corrugation steepness.

• Steps:

• Assume known background flow U(z).

• Derive (approximate) linear order perturbation based on a simplifying 
model

• There are 4 second-order modes due to self-advection.

• One of these modes is resonant, growing linearly with time. It has the 
form of longitudinal vortices, or «rolls».

• Some more details on the theory and derivation are found on later slides.

1 A.D.D. Craik, J. Fluid Mech. 41 801-821 (1970)



Theory step 1: approximate linear solution

• Model: model the real (no-slip) wall by a displacement 
thickness of the same shape, creating a free slip, 
impermeable boundary. 

• Captures all essentials of this kinematic effect

• Treat first-order perturbation as steady and inviscid

• Viscosity’s primary effect is to create mean shear 
U(z) and displacement.

• Linearising Euler equation w.r.t. perturbations and 
eliminating velocities gives a Rayleigh equation for the 
first-order pressure perturbation ,:

and boundary conditions at bottom/top of domain.

• Easily solved numerically. Analytical solution for power 
law case 

• 1st order velocities given by



• Navier-Stokes equation at 2nd order reduces to

with

• Second order harmonics from sums & differences of 
wave vectors (±kx , ±ky).

• Modes with purely spanwise wave number 

are resonant. Other 2nd order harmonics are negligible.

• Solutions can be found in two cases:

1. Early onset, transient growth

• Initially the 2nd order motion is transient and 
inviscid.

2. Ultimate steady state

• Eventually vortices are stabilised by viscosity, 
reaching a viscous and steady state.

Theory step 2: resonant 2nd order mode

2nd order vertical 
velocity perturbation

Convective term, 
products 
of 1st order quantities.

Reynolds number 
(based on characteristic 
velocity and depth)

Found p1 numerically or 
analytically on previous slide.



Theory result: early onset transient growth

• Initial growth assumed essentially inviscid; set Re-1=0.

• Results in 

with particular solution growing linearly in time:

•

(d± chosen to satisfy boundary conditions)

• Spanwise velocity:

• Streamwise velocity increases quadratically with t:

Downwelling towards crest/trough-line, upwelling from 
saddlepoint-line



Theory result: ultimate, steady state solution

• Set transient term in Navier-Stokes to zero. Again a 
simple solution:

• As before, , and we find the streamwise 
2nd order velocity* 

Note that spanwise and vertical velocities u,w scale as 
Re, but the streamwise velocity u scales as Re2.

• Initial growth closer to the wall; vortices moving towards 
the bulk before steady state.

* see manuscript for explicit expressions for the d-coefficients

Example: «deep» water (upper boundary far away):

Initial growth rate Ultimate steady state



Theory result: dependence on crossing angle θ
• Circulation strongest for «protracted eggcarton», 

θ ~ 10° - 20°
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Initial growth rate Ultimate steady state

Velocity profiles zq

θ =20° Initial growth 
rate greatest 
around 20°

θ =45° Relatively 
weak 
circulation at 
45°

θ =10° Ultimate 
vortex strength 
peaks around 
10°

θ =70° Vortices can 
change sign at 
large θ, but are 
then weaker

Different 
velocity 
profiles, same 
general trend.



Confirmation by numerical simulation

• The phenomenon is confirmed 
by simulation (Lattice-
Boltzmann method) of laminar 
flow between two plates with 
crossing-wave pattern.

• Tested effect of amplitude, Re 
and spanwise phase shift.

In phase

In antiphase

Increasing amplitude of «wall waves»

θ = 22.5° , Re ≈ 400.



Confirmation by numerical simulation

• The phenomenon is confirmed by simulation (Lattice-
Boltzmann method) of laminar flow between two plates 
with crossing-wave pattern.

• Tested effect of amplitude, Re and spanwise phase shift.

Re = 225, θ = 0

Re = 225, θ = π/2

Re = 900, θ = 0

Re = 900, θ = π/2

Flow snapshots: cross-flow plane

Vortices become unstable at high Reynolds numbers. 
Here Re = 1600; Geometry: , θ = π/2, θ = 22.5°, h = λ/2.

h

, h = λ/2
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