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< One-slide summary

e Streamwise vortices occur in fluid flow over surface
with crossing-wave pattern.

e Kinematically equivalent to Langmuir circulation (the
«CL1» mechanism, Craik 1970).

e Analytical theory presented for Langmuir rolls during
e the early onset, and
e the final, steady-state.

e Explicit expressions when velocity profile is a power
law U(z) = Z9.

I

e Confirmed by Lattice-Boltzmann simulations.
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- Introduction

'

e Full details of this work may be found here: arXiv:2005.00317v1 [physics.flu-dyn]

Langmuir-type vortices in boundary layers
driven by a criss-cross wavy wall topography
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- Introduction

N’

e Conventional Langmuir circulation
e QOccurs due to interaction of waves and near-surface shear?!

* Observable as «windrows» on surface, where foam etc gathers in
downwelling areas.

* Important contributor to mixing in the upper ocean?.
 Neither wind nor surface waves are necessary

* The Craik-Leibovich mechanisms are purely kinematic interaction
between mean shear and wavy fluid motion.

1S. Leibovich, Annu. Rev. Fluid Mech. 15 391-427 (1983)
@ NTNU 2S. E. Belcher et al., Geophys. Res. Lett. 39 L18605 (2012)

Conventional Langmuir rolls due to crossing :
waves atop a shear current! (CL1 mechanism) -

Langmuir rolls due to boundary layer over a criss-cross /

wavy bottom. (Also CL1 mechanism)
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- Theory (outline)

'

* Follows roughly the procedure of Craik 1970!. See our manuscript for full
details.

e The wavy boundary introduces perturbations to the mean shear profile,
treated up to second order in the wall corrugation steepness.

e Steps:

e Assume known background flow U(z).

e Derive (approximate) linear order perturbation based on a simplifying
model

Boundary topography
with wave-vectors (k.. 4ky)

e There are 4 second-order modes due to self-advection. indicated.

* One of these modes is resonant, growing linearly with time. It has the
form of longitudinal vortices, or «rolls».

e Some more details on the theory and derivation are found on later slides.

ONTNU 1 A.D.D. Craik, J. Fluid Mech. 41 801-821 (1970) - \_/ Y @c-g?#
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- Theory step 1: approximate

'

e Model: model the real (no-slip) wall by a displacement
thickness of the same shape, creating a free slip,

impermeable boundary.

e Captures all essentials of this kinematic effect
e Treat first-order perturbation as steady and inviscid

e Viscosity’s primary effect is to create mean shear
U(z) and displacement.

e Linearising Euler equation w.r.t. perturbations and
eliminating velocities gives a Rayleigh equation for the
first-order pressure perturbation p,(k, =

ph’ [Tf
I r?
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p—E*p=0

linear solution

and boundary conditions at bottom/top of domain.

Easily solved numerically. Analytical solution for power

law case [/ = ¢

15t order velocities given by

P, [*r r
U=—=—
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- Theory step 2: resonant 2" order mode

S’
* Navier-Stokes equation at 2nd order reduces to e Solutions can be found in two cases:
(0 — Re 'VAV?w = R(2);
Convective term, .

Reynolds number / f N oroducts 1. Early onset, transient growth

(based on characteristic 2nd order vertical of 1st order quantities. L. . . ]

velocity and depth) velocity perturbation . In|t|aIIy the 2nd order motion is transient and

with Found p, numerically or w

analytically on previous slide.

k2, U’
R(z) = %A”"Ug (K3, — K2,)p3 + (91)?] -

2. Ultimate steady state

 Eventually vortices are stabilised by viscosity,
reaching a viscous and steady state.

e Second order harmonics from sums & differences of
wave vectors (tk,, k).

 Modes with purely spanwise wave number

are resonant. Other 2"9 order harmonics are negligible. ‘/
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- Theory result: early onset transient growth

'

Initial growth assumed essentially inviscid; set Re'=0. ¢ Streamwise velocity increases quadratically with t:

Results : LU (w2
esults In W — Zd_ieiﬁ:z +-u?x(;_;): 'L{(/-;:t) — —5[/"(/_,)'3_!_?(»’.::{_-)!

with particular solution growing linearly in time:

t pA
wx (z) = — / dER(E) sinhk(z — &).
K Jo
(d* chosen to satisfy boundary conditions)

e Spanwise velocity: ¢

—_— == —— - =
__..-- L —

- -
- =~ - - -
-—— -~ . - -
—_— - R e -_— -,

v =1w'/ky
J — L
Downwelling towards crest/trough-line, upwelling from

saddlepoint-line
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- Theory result: ultimate, steady state solution
S’
e Set transient term in Navier-Stokes to zero. Again a Note that spanwise and vertical velocities u,w scale as
simple solution: Re, but the streamwise velocity u scales as Re?.
w = Z(da—L + zdE)eT™™ Ly (2);
+
* Initial growth closer to the wall; vortices moving towards
Re the bulk before steady state.
.U_?X(Z) — ‘) 3 / fng(g) C:r{h( _‘3”
0
G(Z) — Hillh(Z) 7 COSh(Z). Example: «deep» water (upper boundary far away):
« Asbefore, v = iw'/k, , and we find the streamwise
2nd order velocity*
Zdi trz | f/ de U (€)w(€) sinh k(z — €).
0
Inltlal growth rate Ultimate steady state

@ | JT| J l ] * see manuscript for explicit expressions for the d-coefficients N\ V L-#
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- Theory result: dependence on crossing angle 0

N’

e Circulation strongest for «protracted eggcarton»,
0~ 10°- 20°

Initial growth
rate greatest
around 20°

Vortices can
change sign at
large 6, but are
then weaker

Ultimate
vortex strength
peaks around
10°

10 20 30 ¥ 5 6 70 80
o1
Ultimate steady state
et

Initial growth rate
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e The phenomenon is confirmed
by simulation (Lattice-
Boltzmann method) of laminar
flow between two plates with
crossing-wave pattern.

* Tested effect of amplitude, Re
and spanwise phase shift.
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Confirmation by numerical simulation

Increasing amplitude of «wall waves»
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- Confirmation by numerical simulation

N’

e The phenomenon is confirmed by simulation (Lattice-
Boltzmann method) of laminar flow between two plates
with crossing-wave pattern.

Flow snapshots: cross-flow plane

 Tested effect of amplitude, Re and spanwise phase shift.
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Vortices become unstable at high Reynolds numbers.

# ~ 7w /8. Slice at © = 7/6k,.
Here Re = 1600; Geometry:, 9 =1/2,0 =22.5°, h=A/2. ™/ ice at 7 =m/

Streamlines slices of full three-dimensional fow field. a ~ 0.0625 , h=A/2
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