Correlative cathodoluminescence and EDS imaging of the benthic agglutinated foraminifer Liebusella goesi

Sangeetha Hari
Delmic BV

Acknowledgements
Sten Littman
Nicolaas Glock
Jan von Arx
Toon Coenen
Alexandra-Sophie Roy
Imaging sedimentary rocks

- Sedimentary rocks are important both for studies of the earth’s history as well as for being a source of fossil fuels

- They are formed by the accumulation of mineral and organic particles

- How to characterise sedimentary rocks?

Using SEM-based cathodoluminescence (CL) imaging:

- High resolution
- Complementary to other SEM-based techniques like BSE imaging and EDS
- Provides contrast where standard SEM imaging may not
Cathodoluminescence (CL) generation

Cathodoluminescence is the process whereby light (UV-VIS-IR) is generated when an electron beam hits a specimen.
CL detector design

Pole piece
Mirror
Sample
Positioning

Cathodoluminescence collection
Cathodoluminescence detection
Mode 1: CL intensity mapping

Fast (video rate) CL intensity mapping with a single pixel detector such as a PMT

Fast imaging of relatively large areas
Mode 2: CL Spectroscopy

Collect a full spectrum from the sample at every excitation point.
CL imaging of sedimentary rocks

- Typically the CL yield is high enough for rapid scanning and, in some cases, even video-rate scanning → CL Intensity Mapping
- This allows fast inspection of relatively large areas
- Spectroscopy can be used to quantitatively map the composition of the sample
- Mapping the quartz content, for example, enables the rigorous segmentation of granular and cemented material

CL detector mounted on a Scanning Electron Microscope (SEM)
CL imaging of *Liebusella goesi*

- *Textulariid* benthic foraminifers live on and in seafloor sediments and form shells of agglutinated sediment particles

- They are very important biostratigraphic markers, and fossil agglutinated foraminifera are important archives for paleoceanographic reconstructions

- Furthermore, living *textulariids* show a strong diversity, populating a diverse range of marine habitats partly and can reach high living abundances, making them important for benthic ecosystems.

Goal of this study: Show how CL spectroscopy can be employed to study agglutinated foraminifera

Sample used: *Liebusella goesi* from the Swedish Gullmar Fjord
Correlative imaging: CL + SEM + EDS
(Sample 1)

CL Intensity map

SEM image

EDS map

Electron energy = 10 keV

Electron energy = 15 keV
EDS imaging of whole organism
(Sample 1)
Characterisation of *Liebusella goesi* (Sample 1)

EDS map

2 materials indicated:
- Quartz
- Al-feldspar

CL spectroscopy

2 types of spectra observed, confirming the materials:
- Quartz
- Feldspar
Correlative imaging: CL + SEM + EDS
(Sample 2)

CL Intensity map
SEM image
EDS map

Electron energy = 5 keV
Electron energy = 15 keV

Intragranular features
Characterisation of *Liebusella goesi* (Sample 2)

CL Intensity map

CL Spectroscopy Map

CL spectra at different locations of the spectroscopy map
Characterisation of *Liebusella goesi* (Sample 2)

- K-Feldspar
- Quartz
- Na-Feldspar
Conclusions

- Fast panchromatic CL imaging using a photomultiplier tube was performed over a large area of the foraminifera, which revealed textures and contrasts of interest in the shell (test)
- Together with the high resolution SEM image acquired simultaneously, this dataset can be valuable in establishing the geological history as well as in identifying the chemical composition of the cement used for the agglutination of sediment particles
- EDS measurements were performed, revealing the spatial distribution of elements such as potassium, calcium, sodium, silicon and oxygen, in the sediment particles of the shell
- This was useful in indicating the presence of minerals such as quartz and feldspar, and hyperspectral CL imaging was performed to rigorously identify them, and to visualize intragranular features, not visible in the EDS data
- Based on the CL spectral data, we were further able to identify different grades/types of quartz and feldspars. These results show that these foraminifera prefer different sediment materials with varying grain sizes, depending on the size of the newly formed chamber, to achieve the highest mechanical stability
If you have any questions about cathodoluminescence in general, or about this work in particular, please feel free to contact me at hari@delmic.com or visit our website www.delmic.com

More CL imaging at the EGU:
Please visit this presentation if you are interested!

EGU2020-4515, Session GMPV1.2
“Table-top Cathodoluminescence Microscopy for Geology”
Toon Coenen, Wednesday, 06 May 2020, 08:30-10:15