Seismic investigations of the Martian near-surface at the InSight landing site

Cedric Schmelzbach(1), Nienke Brinkman(1), David Sollberger(1), Sharon Kedar(2), Matthias Grott(3), Fredrik Andersson(1), Johan Robertsson(1), Martin van Driel(1), Simon Stähler(1), Jan ten Pierick(1), Troy L. Hudson(2), Kenneth Hurst(2), Domenico Giardini(1), Philippe Lognonné(4), W. Tom Pike(5), Tilman Spohn(3), W. Bruce Banerdt(2), Lucile Fayon(4), Anna Horleston(6), Aaron Kiely(2), Brigitte Knapmeyer-Endrun(7), Christian Krause(3), Nicholas C. Schmerr(8), Pierre Delage(9), Nick Teanby(6), Christos Vrettos(10)

(1) ETH, Zurich, Switzerland; (2) Jet Propulsion Laboratory, California Institute of Technology, USA; (3) Deutsches Zentrum für Luft und Raumfahrt, Germany; (4) Institut de Physique du Globe de Paris, France; (5) Imperial College, London, UK; (6) University of Bristol, Bristol, UK; (7) University of Cologne, Germany; (8) University of Maryland, USA; (9) Ecole des Ponts, France; (10) Technical University Kaiserslautern, Germany.
Motivation – “Active-source” near-surface seismic study

• The Heat Flow and Physical Properties Package (HP3) was deployed close to seismometer package (SEIS) in mid-February 2019

• HP3 mole is a self hammering device producing seismic waves with each hammer stroke

• The seismic signals may allow inferring on the shallow elastic properties to (Kedar et al., 2017):
 – Study the geological structure, composition and history at the landing site
 – Understand the seismic noise recorded by SEIS
 – Provide regolith properties for future missions

Schmelzbach et al. (2020), EGU2020-20481
Proposed seismic analyses to study the near-surface

Seismic traveltimes

- The traveltime of the wave arriving first at SEIS can provide information on the subsurface seismic velocity structure (Brinkman et al., 2019)

Subsurface reflection imaging

- Reflected waves may be used to image shallow interfaces analogous to vertical seismic profiling (Golombek et al., 2018; Brinkman et al., 2020)
- Requires the mole to penetrate into the subsurface

Seismic reflection imaging illustrated with synthetic data

Schmelzbach et al. (2020), EGU2020-20481

Keary et al. (2002)

Golombek et al. (2018)
Challenges of this opportunistic experiment

• The analysis of the HP3 seismic signals is an opportunistic experiment that was only conceived after the key hardware decisions were made (Kedar et al. 2017)

• **Time-resolution challenge**: the SEIS acquisition flow is designed for seismic signals with frequencies < 50 Hz but the HP3 mole produces signals with frequencies > 100 Hz (Sollberger et al., 2020)

• **Time-correlation challenge**: SEIS and HP3 operate on independent clocks that need to be correlated to determine the traveltimes of the seismic waves precisely enough for the proposed analyses (Brinkman et al., 2019)
The HP3 hammering seismic signals are observed to have a much broader frequency content than the nominal SEIS acquisition electronics is designed to record. We therefore developed an acquisition and signal reconstruction flow that includes (1) recording aliased data by omitting filters when down sampling the data for transfer from Mars to Earth and (2) reconstructing the original signals using a sparseness-constrained reconstruction algorithm that exploits the high repeatability of the hammering signals and uncorrelated hammer time and sampling (Sollberger et al., 2020).
First results – Hammering session 4 (sol 158)

- The seismic data of the SEIS short period (SP) sensor were recorded in aliased fashion for several HP\(^3\) hammering sessions.

- First-arrival traveltimes were determined from the reconstructed data.

- An apparent velocity of 124 ± 34 m/s was obtained for hammering session 4 (Lognonné et al., 2020).
Interpretation

• Observed low (~120 m/s) seismic P-wave velocity interpreted to represent the **bulk velocity of the volume between HP\(^3\) mole tip and SEIS**

• Low velocity **consistent with proposed near-surface stratigraphy** (Golombek et al., 2020) of >3 m thick impact-fragmented regolith consisting of poorly sorted unconsolidated sands and rocks

• A **near-surface velocity model** is under construction based on the HP3-SEIS traveltime and compliance inversions using atmospheric pressure signals (Lognonné et al., 2020)
References

• Brinkman et al. (2019), The first active-seismic experiment on Mars to characterize the shallow subsurface structure at the InSight landing site, SEG Technical Program Expanded Abstracts 2019, 4756–4760, doi:10.1190/segam2019-3215661.1

• Golombek et al. (2020), Geology of the InSight landing site on Mars. Nature Communications 11, 1014 doi: 10.1038/s41467-020-14679-1

• Kedar et al. (2017), Analysis of Regolith Properties Using Seismic Signals Generated by InSight’s HP3 Penetrator. Space Science Reviews, 211, 315–337, doi: 10.1007/s11214-017-0391-3

• Lognonné et al. (2020), Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data, Nature Geoscience, 13(3), http://doi.org/10.1038/s41561-020-0536-y

• Sollberger et al. (2020), A reconstruction algorithm for temporally aliased seismic signals recorded by the InSight Mars lander, submitted to Earth and Space Science.

Schmelzbach et al. (2020), EGU2020-20481