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Objective: SMART-SED, i.e. Sustainable Management of sediment transpoRT in reposnSE
to climate change conDitions. Numerical tool able to help smart-cities to assess hydro-
geological risk. Need to model hydro-geological quantities e.g. infiltration
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Motivations: SMART-SED project

Case study: Caldone basin, Lecco northern Italy.
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Model equa[ons

Modeling framework

Input parameters
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Simulation

Digital Terrain Model 
(DTM), with soil 
compositions

De Saint Venant
equations coupled with 
gravitational layer, 
sediment transport and 
snow equations

State variable maps and 
temporal sequences 
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𝜕!𝐻 + ∇ ⋅ 𝐻 𝑢 = (1 − 𝜇) 𝑝 − 𝑓,

𝜕!𝑢 + 𝑔∇𝜂 + 𝑢 ⋅ ∇𝑢 + 𝛾 𝑢 𝑢 = 0.

𝜕!ℎ" + ∇ ⋅ 𝑓" = 𝑓 − 𝑒𝑣 + 𝑠 ,

𝜕!ℎ#$ + ∇ ⋅ 𝑓#$ = 𝑤 ,

𝜕!ℎ#% = 𝜇 𝑝 − 𝑠,
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Model equa[ons

Modeling framework

Input parameters
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Simula[on

Most of input variables, e.g. maximum soil moisture retention, 
hydraulic conductivity depends on terrain compositions

Digital Terrain Model 
(DTM), with soil 
compositions
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Soil texture: Particle Size Fractions (psf)

● In USDA classifica/on soil texture is determined by rela[ve percentage of “fine” length-scale     , i.e. 
less than                :

○ Clay:
○ Silt:
○ Sand: 

● 12 classifica[on in the soil texture triangle:

● Psf data are composi[onal, i.e.:

○ Clay + Silt + Sand    1              constant sum
○ Clay, Silt, Sand ≥ 0                 semi-posi[vity

=
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SoilGrids: digital soil maps

Need to have a psf map at a resolution given by DTM:

● Absense of field measurements

● Presence of an online open access repository SoilGrids:

○ Raster psf at                resolution

○ Result of training data, remote-sensing and machine learning algorithms

[Hengl, T., Mendes de Jesus, J., Heuvelink, G., Ruiperez Gonzalez, M., and Kilibarda, M. e. a. (2017). Soilgrids250m: Global gridded soil information based on 
machine learning. PLOS ONE, 12(2):1–40]
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Our aim is to downscale SoilGrids raster data to DTM resolution, from the literature we have Area-To-Point 
Regression Kriging but it works only in an Euclidean framework, 

need an extension to account for constraints on the variable to be downscaled.
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Downscaling: change of support
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Downscaling: change of support
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From literature we have Area-To-Point Regression Kriging (ATPRK), given a spatial scalar field                            , its 
fine scale prediction in a given    -th pixel, reads:

It is a linear combination of two methods:

Linear Regression: first summation. Where                 are the regression

coefficients and                are some known fine scale covariates, e.g. DTM or some related  

functions.  

Area-To-Point Kriging (ATPK): second summation. The fine residuals are linear combination of coarse 
residuals calculated after linear regression in the neighbourhood of the fine scale pixel      to be predicted. We 
assume second order stationarity on the signal.
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Via minimiza[on of the variance of the fine predicted residuals it is possible to determine the ATPK weights via 
solving the following linear system:
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Downscaling: change of support

[Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial 
interpolation. Geographical Analysis, 36.]

● Block-Block covariance:

● Point-Block covariance: 

● P: upscaling factor, i.e. ra/o between coarse and fine pixel 
measure support 

● covariance of the fine scale residuals unknown, 
cannot be directly es/mated from coarse scale data

[Goovaerts, P. (2008). Kriging and semivariogram
deconvolution in presence of irregular geographical 
units. Mathematical geology, 40:101–128.]

need for variogram 
deconvolu/on
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Downscaling of compositional data
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Psf data                 are composiOonal, they live in a subset of         , the simplex         :

Aitchison (1986) first defined a set of opera[ons in the simplex that define a Hilbert space::

● Closure:

● Sum:

● Product with a scalar:

● Inner product:

Exists a linear isometry called isometric log-raOo transformaOon - ILR that maps        in 

[Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barcelo ́-Vidal, C. (2003). Isometric logratio transformations for compositional data analysis. 
Mathematical Geology, 35(3):279–300]
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Downscaling of composiOonal data

In the Aitchison geometry         the ATPRK predictor reads:

With respect to the classical Euclidean ATPRK predictor here the products and summa[ons are in the simplex, in 
this way the predictor gives results in the simplex so in the feasibility region.

In par[cular, it is possible to use the standard ATPRK implementa[on thanks to the following proposiOon:

Given a composi-onal field                         and a field                            s.t. .
The ATPRK predictor for         is equal to the ILR-transformed predictor for        in the Aitchison simplex:
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Downscaling in the Aitchison simplex imply the following centre-preserving property:
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Let us consider a set of 100 synthetic psf at a resolution of 20 m on a 
geographical domain of dimensions of the Caldone basin.
Each realization of this set is obtained via unconditional Gaussian
simulation via using a spherical variogram model.
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SyntheOc data
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Synthetic data

For each of these realizations we perform upscaling and downscaling, both in Euclidean 
and Aitchison geometry, on a set of upscaling factors P. In this way, we obtain a set of 100 
reconstruction of the initial 20 m psf for each method.
Below we show, on the left the mean violation of the positivity constraints, i.e. Clay, Silt, Sand 
≥ 0 while on the right the mean percentage violation of the constant sum constraint, i.e. Clay 
+ Silt + Sand = 1 .

AA: upscaling Aitchison, downscaling Aitchison
EA: upscaling Euclidean, downscaling Aitchison
AE: upscaling Aitchison, downscaling Euclidean
EE: upscaling Euclidean, downscaling Euclidean
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Case study results

A consequence of the proposiOon is that, in order to analyze how uncertainty propagates to the output of a numerical tool like 
SMART-SED tool, one can perform block sequen-al simula-ons directly on the ILR transformed datas, this is done in order to account 
for the absense of the SoilGrids psf confidence interval. 

[P. Kyriakidis. A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36, 08 2004.]

In this way we can generate B psf maps and perform for each psf a numerical simula[on. In order to analyze e.g. in a Monte Carlo 
seRng how input uncertainty affects numerical model output. 
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B simulations

Numerical modelParameters’ uncertainty

Output 
uncertainty

𝜕!𝐻 + ∇ ⋅ 𝐻 𝑢 = (1 − 𝜇) 𝑝 − 𝑓,

𝜕!𝑢 + 𝑔∇𝜂 + 𝑢 ⋅ ∇𝑢 + 𝛾 𝑢 𝑢 = 0.

𝜕!ℎ" + ∇ ⋅ 𝑓" = 𝑓 − 𝑒𝑣 + 𝑠 ,

𝜕!ℎ#$ + ∇ ⋅ 𝑓#$ = 𝑤 ,

𝜕!ℎ#% = 𝜇 𝑝 − 𝑠,
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Model equa[ons

Modeling framework

Input parameters
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Simulation

Digital Terrain Model 
(DTM), with soil
compositions
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De Saint Venant
equations coupled with 
gravitational layer, 
sediment transport and 
snow equations

𝜕!𝐻 + ∇ ⋅ 𝐻 𝑢 = (1 − 𝜇) 𝑝 − 𝑓,

𝜕!𝑢 + 𝑔∇𝜂 + 𝑢 ⋅ ∇𝑢 + 𝛾 𝑢 𝑢 = 0.

𝜕!ℎ" + ∇ ⋅ 𝑓" = 𝑓 − 𝑒𝑣 + 𝑠 ,

𝜕!ℎ#$ + ∇ ⋅ 𝑓#$ = 𝑤 ,

𝜕!ℎ#% = 𝜇 𝑝 − 𝑠,

State variable maps and 
temporal sequences 
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● Vertical arrows 
represent vertical 
fluxes, they link the 
surface processes with 
soil dynamics.

● Hydrology links to 
sediment yield transport 
via horizontal flux 
function of mass 
surface flux, horizontal 
arrow.

● Box colored in brown 
and blues are modeled 
via proper conservation 
law while atmosphere 
dynamics is neglected.
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Soil texture information is needed to model properly infiltration (our model implements a SCS-CN method 
in a dynamic way).

Simulation tool main features:
● Ability to perform basin frequency response subject to multi-event rainfall
● Automatic determination of river bed, no distinction between drainage and slopes regions
● Output raster format in ESRI ASCII, data can be processed in applications like QGIS
● Basin scale sediment yield modeling
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Conclusions and future developments

Conclusions:
We have shown the capability of the geostatistical model to deal with downscaling of 
compositional data, psf data for us, and shown one output of the numerical model for one day 
uniform and constant rain on the whole basin for one psf realization. 

Future developments:
We are planning to perform a global sensitivity analysis, in a Monte Carlo setting, on the 
output of the numerical model subject to the variability of the input psf data for a given rainfall 
event.


