DATA ASSIMILATION FOR THE TIME-DEPENDENT RECONSTRUCTION OF CONTINENTS.

Aim
Assimilate Paleomagnetic data to reconstruct the motion of continents over the last hundreds of Myr, while preserving basic geodynamical principles.

Motivation
- Using plate tectonic theory, we can integrate a wide range of geological and geophysical observations to produce kinematic plate tectonic reconstructions. These reconstructions are built via a largely manual process of integrating many individual time-dependent, regional tectonic histories into a geographically self-consistent model, making the quantitative estimation of uncertainties very complex.

Here, we demonstrate a first step to building a data assimilation framework for plate tectonic reconstructions: we apply a particle filter to reconstruct time-dependent continental configurations and motions.

The Forward Model
Continents motions are solid body rotations:

At each timestep, we compute the rotation of each continent during the time interval (here 1 Myr). This rotation is determined by 3 parameters:

- D_0, the distance from continent centroid to the Euler pole (pole of rotation)
- V_c, the velocity of the continent's centroid
- T_s, the fraction of the current rotation to be kept for the next rotation.

Composition of the Random drift for each continent: D_0, V_c, and T_s are random variables. Each of them follows a beta function. We choose the parameters (a, b) of those beta functions to fit the following geodynamical constraints:

- $max |a| = 18$ centimeters maximum, made $c = 5.3$ centimeters
- D_0 is related to spin vs translation motions for continents: made at 10000 km.
- T_s: how often the continents change drastically their trajectory.

Collision rules:
- If during a timestep, two continents overlap each other, the two bodies deformed and are rotated together.

Example Random Drift Scenario

Database of inclination and declination of the magnetic field fossilized in rocks.

Uncertainties modelled with Fisher statistics:

$\mathcal{F}_\theta (\mathbf{x}_t) = C(\mathbf{x}_t) \exp(\mathbf{h}^T \mathbf{H}_t \mathbf{h})$

with $C(\mathbf{x}_t) = \frac{2\pi e^{-0.5}}{\pi e^{-0.5}}$

North America paleopoles computed from the inclination declination database used in Tetley (2018), dated from 0.5 to 300 Myrs.

Data Assimilation Method

Observations

Aims:
- Estimate the trajectory of continents for at least 130 Myrs.
- Further development of data assimilation framework for paleomagnetic data.

Preliminary Tests

Synthetic experiment

Synthetic experiment

- Time (Myrs)
- Distance Pole-Centroid (km)
- Declination
- Centroid velocity, cm/yr

1. True
2. Estimated with 100 particles
3. Estimated with 1000 particles
4. Estimated with 10 000 particles

Conclusions
- We have developed a data assimilation framework for paleomagnetic data:
 - based on the Particle Filter,
 - with a continental drift model consistent with basic geodynamics rules,
 - where the uncertainties on observations are taken into account.
- For single continent synthetic experiments, a number of particles of ca. 10000 allows us to estimate the trajectory of continents for at least 130 Myrs.

The Way Forward
- Perform synthetic tests with data at multiple sites and on different continents
- Optimize forward code to allow for more particles
- Test different resampling techniques, while concerning geodynamical constraints.

References