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AIM
Assimilate Paleomagnetic data to reconstruct the motion of
continents over the last hundreds of Myr, while preserving
basic geodynamical principles.

PRELIMINARY TESTS
Synthetic experiment
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Observations
MOTIVATION
• Using plate tectonic theory, we can integrate a wide range of

geological and geophysical observations to produce kinematic
plate tectonic reconstructions. These reconstructions are built
via a largely manual process of integrating many individual time-
dependent regional tectonic histories into a geometrically self-
consistent global model, making the quantitative estimation
of uncertainties very complex.

• The particle filter provides a statistically consistent framework
within which one can assimilate data of variable nature and
source within a dynamical model, providing quantitative uncer-
tainties on the estimated trajectory of the system.

Here, we demonstrate a first step to building a data as-
similation framework for plate tectonics reconstructions:
we apply a particle filter to reconstruct time-dependent
continental configurations and motions.

THE FORWARD MODEL
Continents motions are solid body rotations:
At Each timestep, we compute the rotation of each continent
during the time δt (here 1 Myrs). This rotation is determined
by 3 parameters:
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• Dp, the distance from continent centroid
to the Euler pole (pole of rotation)

• VC , the velocity of the continent’s cen-
troid

• Ts, the fraction of the current rotation to
be kept for the next rotation

Computation of the Random drift for each continent:
DP , VC and Ts are random variables. Each of them follows a
beta function. We choose the parameters (a, b) of those beta
functions to fit the following geodynamical constraints:
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max(VC) = 18 cm/yr maximum,
mode ∈ [2, 3] cm/yr
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Dp is related to spin vs translation mo-
tions for continents: mode at 10000 km.
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Ts: how often the continents change
drastically their trajectory.

Collision rules:
If during a timestep, two continents overlap each other, then
they form a cohesive block and are rotated together.

EXAMPLE RANDOM DRIFT SCENARIO
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Uncertainties modelled with
Fisher statistics:

p(hp)(ho,κ) = C(κ) exp(κ[ho]Thp)

with C(κ) =
κ
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North America paleopoles com-
puted from the inclination decli-
nation database used in Tetley
[2018], dated from 0.5 to 550 Ma

DATA ASSIMILATION METHOD
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We use a particle filter [van Leeuwen et al., 2018]:

Initial setup

Np particles {xnp
0 }np∈[1,Np] with iden-

tical continental blocks, but different random rota-
tions.
weight: {ωnp

0 = 1/Np}np∈[1,Np]

pdf: p(x0) =

Np�
np=1

ω
np
0 δ(x0 − x

np
0 ),

with δ the dirac function.

loop over observations:

• Forecast: see forward model.
• weight computing: ∀np ∈ [1, Np],

ω
np
k

=
p(y|xnp

k
)

Np�
j=1

p(y|xj
k
)

with p(y|xk) a multivariate Fis-

cher distribution with each component independant of the other.
• Stochastic universal resampling.

CONCLUSIONS
• We have developed a data assimilation framework for paleomagnetic data:

– based on the Particle Filter,
– with a continental drift model consistent with basic geodynamics rules,
– where the uncertainties on observations are taken into account.

• For single continents synthetic experiments, a number of particles of ca. 10000 allows us to estimate the trajectory of continents
for at least 130 Myrs.

THE WAY FORWARD
• Perform synthetic tests with data at multiple sites and on different continents
• Optimize forward code to allow for more particles
• test different resampling techniques, while conserving geodynamical constraints.
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