3D Reconstruction of Volcanic Ash Clouds Using Simulated Satellite Imagery

Tom Etchells\(^{(1)}\), Lucy Berthoud\(^{(1)}\), Andrew Calway\(^{(2)}\), Matt Watson\(^{(3)}\)

\(^{(1)}\) University of Bristol, Department of Aerospace Engineering, United Kingdom
\(^{(2)}\) University of Bristol, Department of Computer Science, United Kingdom
\(^{(3)}\) University of Bristol, Department of Earth Sciences, United Kingdom

tom.etchells@bristol.ac.uk
Motivation

- Volcanic ash suspended in the atmosphere poses a significant hazard to aviation.
- Knowledge of 3D plume shapes and volumes can aid in constraining ATDM models for forecasting.
- 3D reconstruction has been demonstrated with ground-based and UAS-based platforms.
- Satellite-based platforms would provide a unique perspective, although few current satellites can provide the required multi-angle imagery.
- Recent advances in small satellite technology, formation flying, and constellations could change this in the coming years.

Ash advisory published following the 2011 Grímsvötn eruption. Credit: London VAAC, 24 May 2011
Problem Definition

• To assess the feasibility of 3D reconstruction from space, a simulation framework was developed.
• This framework was then used to investigate the reconstruction performance for several imaging scenarios based off a theoretical University of Bristol CubeSat (UoBSat).

Methodology

• The simulated reconstruction can be split into four stages:
  1. Orbital simulation.
  2. ‘Ground truth’ plume input generation.
  4. 3D reconstruction with simulated images.
Methodology

1. A simple orbital simulation is used to obtain satellite, and thus image, locations.
2. A pre-generated input plume model is used as a ‘ground truth’, this could be a primitive shape, a rough plume model, or an accurate simulated plume.
3. A set of simulated images of the input plume model are generated at the provided image locations, emulating satellite imaging.
4. A 3D reconstruction scheme is then applied to the simulated images as if they were real data. This generates a reconstructed plume model to compare with the ‘ground truth’.
Results

- The simulation framework demonstrated accurate 3D reconstruction of volcanic ash clouds from a space-based platform.
- Reconstruction performance was investigated for various imaging scenarios of a theoretical UoBSat.
- E.g. the number of images required to reach ‘diminishing returns’ for different resolution imagers (see right).
- Other scenarios could include image frequency, elevation angle bounds, or ‘off-track’ imaging.
Future Work

• Future work focuses on improving the simulation framework. This consists of validation of the reconstruction scheme and reducing any limiting simulation assumptions, some examples are given below.

Validation

• The final reconstruction scheme would ideally be validated against real-world satellite data (potentially from MISR, or Planet Labs imagery).

Assumptions

• Current simulated images perfectly identify the plume, real images will include artifacts / meteorological clouds which will obscure the plume.
• The input ‘ground truth’ plume used so far is not particularly realistic, additional plumes/orientations will make resulting trends more reliable.
• Assumes simultaneous imaging, no time variance off the plume.