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Introduction

Faults comprise
segmented arrays

The summed
displacement resembles
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orthington distribution on a single
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Geometric coherence
(Walsh and Watterson,
1991)
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Introduction

Displacement is transferred
between adjacent segments
across relay zones or relay
ramps
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Horizon 4

Introduction

Sometimes segments
within a fault array dip in
the ‘wrong’ direction

Boundaries between
segments are referred to
as conjugate relay zones




Introduction

Sometimes segments
within a fault array dip in
the ‘wrong’ direction
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What do these segment
boundaries look like and
how is displacement
transferred across them?
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The answer to these questions may be relevant to accommodation zones between basin-bounding faults



Lake Malawi — accommodation zones
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Porcupine Basin

Mid Eocene surface (E4)
— coherency attribute

Conjugate relay zones
Layerbound normal fault

system (1) within mud-
dominated post-rift
sequence

Cenozoic gravity driven fault
system

Good quality seismic data

~N-S strike and up to 85 m
throw

Roughly equal number of
east- and west-dipping faults

Worthington 2006




Porcupine Basin

Detailed geometry of a
typical conjugate relay zone




Porcupine Basin

Seismic sections across
a representative
conjugate relay zone

The two opposed
dipping faults intersect
where they overlap one
another




Porcupine Basin

Mutual cross-cutting
faults at the line of
intersection (not talking
about this).

Ferrill et al. 2009




‘Graben relay zone’ = Porcupine Basin

Seismic sections across
a representative
conjugate relay zone

Above the line of
intersection the faults
form a graben in cross-
section




Porcupine Basin

:

:

5807000 5806000
Grid ref. {Northing) (m)

Flat topography between the
opposed dipping faults.
Displacement changes
accommodated by change in
footwall elevation.
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‘Horst relay zone’ g, POfCUpine Basin

Seismic sections across
a representative
conjugate relay zone

Below the line of
intersection the faults
form a horst in cross-
section




Porcupine Basin
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Flat topography between the opposed
dipping faults.

Displacement changes
accommodated by change in hanging-
wall elevation.
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Divergent l
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3D geometry

Conjugate relay zone
geometry changes
across the line of
intersection between
the faults.




Structure 1: Graben relay Structure 2: Horst relay

y " . Conjugate relay
zones in other
areas

Similar characteristics
are observed on
tectonically driven

. normal faults with up
X: i to 300m throw
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Hammerfest Basin, Barents Sea




Structure 1: Graben relay Structure 2: Horst relay

v Conjugate relay
zones in other

areas

Similar characteristics
are observed on
tectonically driven
normal faults with up
to 300m throw

Interaction occurs even
when overlapping
faults do not intersect
one another




Horizon geometry
— general pattern

High bed dips and large
elevation changes outside
the area of overlap

Flat horizons within the
area of overlap between
faults

Switch in subsidence/
uplift pattern across the
line of fault intersection




Horizon geometry
—explanation

A single fault has
symmetrical footwall
uplift and hanging-wall
subsidence




Horizon geometry
—explanation

A single fault has
symmetrical footwall
uplift and hanging-wall
subsidence

A second fault of similar
size with opposed dip
deforms the first fault to
enhance footwall
topography and reduce
hanging wall topography.

Therefore mutual
hanging wall is flat.




Horizon geometry
—explanation

The same rationale can
be used for horizon
geometry beneath the
line of intersection.

Horizon geometry is
explained by a
superposition of fault
deformation fields.




Accommodation
of strain

Similar geometries to
those mapped for
‘small’ faults are also

S ﬁmmodation recognized at
. , accommodation zones

between basin-
bounding faults

East African Rift
Ebinger 1989; Faulds & Varga 1998

Horst relay zone




Slyne Basin




Slyne Basin
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Conclusions

Characteristic horizon geometries are associated with transfer of
displacement between opposed dipping faults.

Horizon geometries can be explained as superposition of the
deformation fields of contemporaneous faults with relatively low
displacements (< 300 m).

May also account for displacement distributions and topographic
expression at conjugate accommodation zones between basin-bounding
faults.

Opposed dipping faults can interact with one another without
intersecting.






