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Introduction

Using a combined approach of Complex Networks and Gaussian Process Regression (GPR), we make
skillful predictions of both pan-Arctic and pan-Antarctic monthly averaged summer sea ice extents (SIE) for
all years between 1985 and 2019. Predictors are based on monthly averaged sea ice concentration (SIC) data
from the preceding 3 months (1 - 3 months lead time). See https://doi.org/10.1175/WAF-D-19-0107.1
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Method

Complex Networks:
® Compute Pearson correlations between all available pairs of SIC grid cells x,,(t) and x(t), where
each time series t consists of n observations (ty, ty, ..., t;;), with t,, being the year of the forecast.
Based on Pearson correlations, a community detection (clustering) algorithm groups SIC grid cells
into geographic ‘areas’ Aj of sea ice homogeneity.
A single time series is generated for each node A; based on the cumulative anomaly of each area-
weighted ¥, grid cell: y;(t) = Xyea, Xp (t)\/l/J_p
® Links between nodes are generated as the temporal covariance between nodes w;; = cov(y;(t), x;(t))
and are used to create a stochastic matrix of random walk transition rates M for GPR.

Gaussian Process Regression:

® Network nodes X = {x;(t)},-, become the nx N-dimensional design matrix in a GPR model.
o
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Priors over functions (y = {(X) + 62]) are fitted in the form of a random walk covariance kernel
Zorior = 0€Xp(£M) with hyperparameters 6 = (£, a, 02) determined through type II maximum
likelihood.

®* The model is trained based on the network inputs X and the summer SIE target y;, up to the year t,,_.
® A forecast of Arctic(Antarctic) summer SIE is then computed based on the test inputs as
June(November), July(December) or August(January) SIC of the year of the forecast, i.e. ty.
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