Narciso, J.; Azevedo, L.; Van Meirvenne, M.; Van De Vijver, E.

EGU General Assembly 2020

MOTIVATION/OBJECTIVES – IMPROVE LANDFILL MODELLING

$\bullet \bullet \bullet$

Main Motivation

Enhance the current landfill deposits modelling

Large heterogeneity of deposited wastes

Challenging to characterize using only direct interpretation of geophysical measurements.

Geostatistical Approach

Allows a more detailed description of the spatial distribution of the properties of interest and the associated uncertainty.

Data integration

Integrate borehole data and electromagnetic data in a geostatistical framework.

Sensitivity modelling

Uses the sensitivity of the EM response toward changes in a physical property of interest

500.000+ landfills in Europe

METHOD – ITERATIVE GEOSTATISTICAL INVERSION

METHOD – ITERATIVE GEOSTATISTICAL INVERSION

GEOSTATISTICAL INVERSION OF ELECTROMAGNETIC INDUCTION DATA FOR LANDFILL DEPOSITS Joao.narciso@tecnico.ulisboa.pt

METHOD – ITERATIVE GEOSTATISTICAL INVERSION

DATA

•••

Synthetic landfill dataset created based on real data observations made at a mine tailing:

Lab me	earure	ments				Pocietivity
Material	Porosity (%)	Particle Density g/cm^3				Resistivity
Fine shaly-sands material (2.80-0.05)	49.4 s 49.4 49.3	2.825 2.802 2.773 2.797	1 st – Simulate	2 nd – Co-		
Gravel from fine to coarse quartz schist (19.00-1.00)	51.4 51.2 51.5 51.1	2.937 2.897 2.869 2.865	volume from	 simulate particle density and water content		3 rd – Modelling resistivity from porosity and Archie equation, and simulate magnetic
Mean	51.3	2.892	simulation			
			algorithm and lab mearurements from	using porosity and co-SGS.		Magnetic Susceptibility
			Panasqueira tailing.)	

RESULTS

 $\bullet \bullet \bullet$

6 iteration

32 simulated models per iteration

10 Offsets (for 1 m up to 20 m)

2 coil orientation (PRP and HCP)

Global Correlation more than 0.8. 2 Examples:

RESULTS – SIMULATED MODELS OF EC_a AND MS

GEOSTATISTICAL INVERSION OF ELECTROMAGNETIC INDUCTION DATA FOR LANDFILL DEPOSITS

☑ joao.narciso@tecnico.ulisboa.pt

EGU General Assembly 2020

⊠ joao.narciso@tecnico.ulisboa.pt

CONCLUSION

This new geostatistical inversion technique able for the **simultaneous inversion** of FDEM data for EC and MS, which optimize the landfill modelling procedure and is sensitive towards change on the physical properties of interest.

The geostatistical framework enables to address the **uncertainty** of the modelling procedure and allows a more detailed description of the **spatial distribution** of the properties of interest by a spatial continuity pattern imposed by a variogram model.

By providing a flexible framework for integrating different kind of data, the simulated models are simultaneously conditioned by existing **borehole data** and **frequency-domain electromagnetic data**.

Acknowledgements

 $\bullet \bullet \bullet$

This work was supported by the Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science and Technology) through the project SFRH/BD/139577/2018. The gratefully acknowledge the support of the CERENA (strategic project FCT-UIDB/04028/2020). We also thank Schlumberger for the donation of the academic licenses of Petrel.

