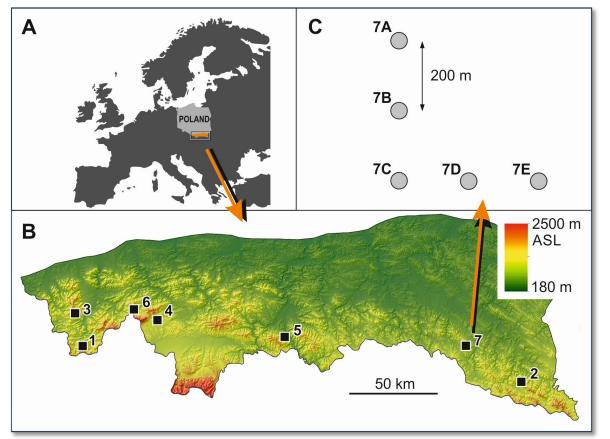
Relationships between aboveground and belowground biomass stock - a case study from mountain area temperate forests in the northern Carpathians

Anna Zielonka¹, Marek Drewnik¹, Łukasz Musielok¹, Dariusz Struzik¹, Grzegorz Smułek¹, Katarzyna Ostapowicz^{1,2}

Corresponding author: Anna Zielonka e-mail address: anna.zielonka@doctoral.uj.edu.pl ORCID iD: https://orcid.org/0000-0003-2356-598X

Research was funded by the Polish National Science Centre (No. 2015/19/B/ST10/02127) and via Project No. UJ/IGiGP/K/DSC/004779

© Authors. All rights reserved


¹ Jagiellonian University, Faculty of Geography and Geology, Institute of Geography and Spatial Management, Gronostajowa 7, 30-387 Krakow, Poland

² University of California, Berkeley, Department of Environmental Science, Policy & Management, Mulford Hall, Berkeley, CA 94720, USA

OBJECTIVES

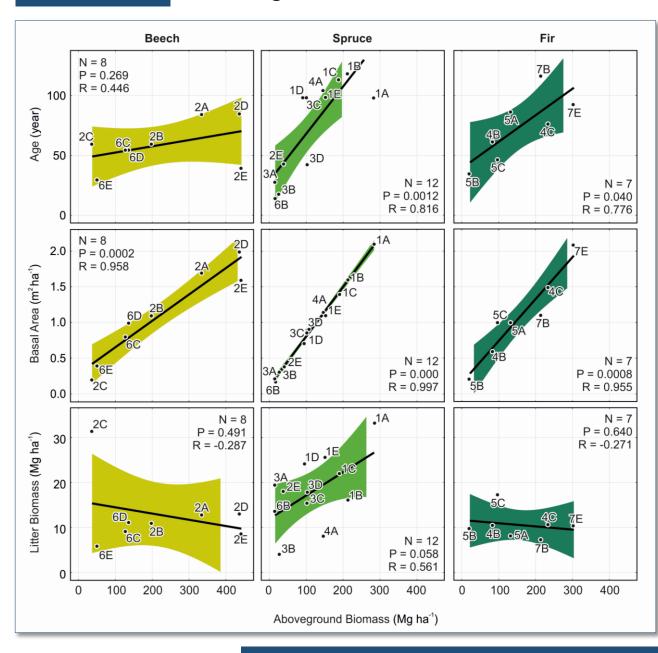
- (1) estimate the soil organic matter (SOM) stock in mountain temperate forests in the Western Carpathians
- (2) estimate fine roots biomass (FRB) in soils under three tree species (beech, spruce, fir)
- (3) assess the relationship between aboveground biomass (AGB), SOM stocks and FRB for beech-, spruce- and fir-dominated forests
- (4) assess the effects of selected abiotic factors (i.e. elevation, aspect, slope, mean annual air temperature, mean annual precipitation) on SOM and FRB stocks found in beech-, spruce- and fir-dominated forests in the Western Carpathians

STUDY AREA

Study site	Coordinates	Elevation range min-max (m a.s.l.)	MAT (°C)	MAP (mm)
1	49°26'54"N			
_	19°03'05"E	701-808	5.1	1127
2	49°11'30"N			
2	22°28'12"E	940-1067	4.6	1068
2	49°38'01"N			
3	18°58'36"E	768-887	5.2	1103
4	49°34'28"N			
4	19°41'09"E	706-753	5.5	978
-	49°29'27"N			
5	20°36'35'E	575-658	6.3	1021
C	49°37'44"N			
6	19°28'30"E	836-937	4.8	1134
7	49°25'10"N			
'	22°01'56"E	602-624	6.1	870

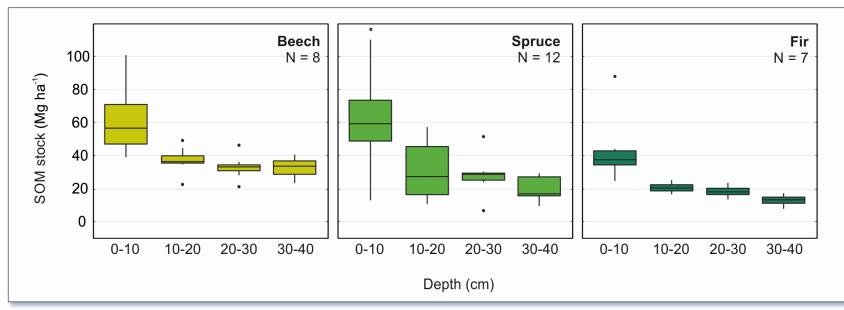
At each study site (1-7) 5 study plots (12 m radius) from National Forest Inventory taken under consideration.

One soil pit at each study site (profile labeled 'C') was excavated to the lithic contact (7 reference pedons); in other study plots soil pits were excavated to approx. 50 cm (25 pedons).


Each plot classified based on dominating AGB species (> 75% of total AGB*) *AGB - live woody tree biomass

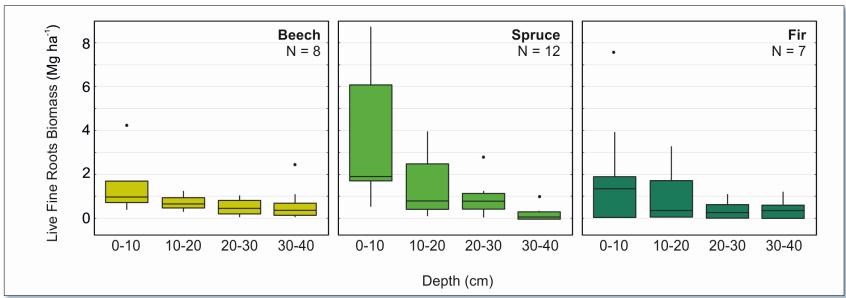
Aboveground biomass

The highest values were identified for beech-dominated forests (more than ~440 Mg ha⁻¹), while the lowest values in beech-dominated stands were less than 40 Mg ha⁻¹. The AGB stock in spruce-dominated stands ranged from ~15 to ~280 Mg ha⁻¹. Among the fir stands, AGB stock varied from ~20 Mg ha⁻¹ to ~300 Mg ha⁻¹.

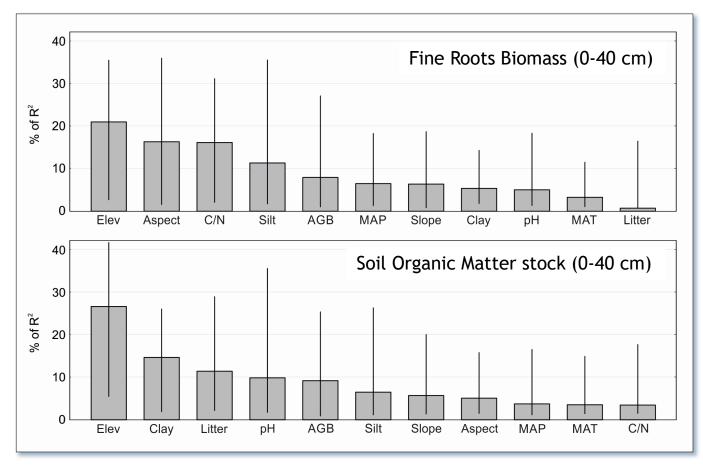


Soils morphology and properties (7 reference pedons)

Depth	Horizon	Sand	Silt	Clay	Texture ³	soc	C/N	рН
(cm)			(%)			(%)		(H ₂ O)
Profile 1C.	Profile 1C. Epidystric Cambisol (Humic, Loamic)							
2-0	Oi	n.a.	n.a.	n.a.	n.a.	24.03	21	4.25
0-14	Α	n.a.	n.a.	n.a.	n.a.	3.92	9	4.29
14-64	Bw	33	20	47	L	2.12	10	4.56
64-98	BC	33	20	47	L	1.59	9	4.90
98-(125)	C	-	-	-	-	1.68	n.a.	5.32
Profile 2C.	Orthodystric	Endoskele ⁻	tic Endo	gleyic Ca	mbisol (Hum	ic, Loa	mic)	
0-3	Oa	n.a.	n.a.	n.a.	n.a.	21.52	25	4.28
3-10	Α	n.a.	n.a.	n.a.	n.a.	4.28	10	4.24
10-30	AB	42	20	38	L	2.99	11	4.76
30-55	Bw	42	20	38	L	2.34	12	4.62
55-73	BC	n.a.	n.a.	n.a.	n.a.	1.73	11	4.64
73- (90)	С	n.a.	n.a.	n.a.	n.a.	1.20	n.a.	4.78
Profile 3C.	Dystric Ortho	oskeletic C	ambisol	(Loamic))			
4-0	Oa	n.a.	n.a.	n.a.	n.a.	25.76	21	3.68
0-5	Ah	n.a.	n.a.	n.a.	n.a.	6.16	19	3.58
5-23	Bw	48	19	33	L	3.72	18	3.86
23-(45)	BC	n.a.	n.a.	n.a.	n.a.	1.92	n.a.	4.01
Profile 4C.	Epidystric Ka	togleyic C	ambisol	(Humic,	Loamic)			
3-0	Oi	n.a.	n.a.	n.a.	n.a.	34.31	20	4.38
0-7	Α	n.a.	n.a.	n.a.	n.a.	2.22	12	4.42
7-15	AB	n.a.	n.a.	n.a.	n.a.	1.52	12	4.49
15-45	Bw	14	25	61	SiL	1.25	12	4.75
45-50	Bwg1	14	25	61	SiL	0.70	14	4.88
50-80	Bwg2	14	25	61	SiL	0.39	6	5.11
80-(100)	BC	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	5.21


Depth	Horizon	Sand	Silt	Clay	Texture ³	soc	C/N	рН
(cm)			(%)			(%)		(H ₂ O)
Profile 5C.	Orthodystric	Cambisol (Loamic)					
3-0	Oi	n.a.	n.a.	n.a.	n.a.	39.45	29	4.39
0-7	Α	n.a.	n.a.	n.a.	n.a.	3.43	18	4.09
7-16	AB	n.a.	n.a.	n.a.	n.a.	1.30	13	4.20
16-27	Bw1	53	22	25	SL	1.24	13	4.31
27-48	Bw2	53	22	25	SL	0.69	8	4.13
48-82	BC	53	22	25	SL	n.a.	n.a.	n.a.
82- (111)	С	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Profile 6C.	Orthodystric	Cambisol (Humic, I	_oamic)				
3-0	Oa	n.a.	n.a.	n.a.	n.a.	45.17	23	4.72
0-12	Α	n.a.	n.a.	n.a.	n.a.	3.88	13	4.12
12-20	AB	n.a.	n.a.	n.a.	n.a.	1.77	13	4.15
20-38	Bw1	40	26	34	L	1.53	12	4.28
38-60	Bw2	40	26	34	L	1.59	13	4.41
60-70	BC	40	26	34	L	1.15	15	4.49
70-(105)	С	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Profile 7C. Orthoeutric Cambisol (Humic, Loamic)								
3-0	Oa	n.a.	n.a.	n.a.	n.a.	39.35	32	4.81
0-28	Α	n.a.	n.a.	n.a.	n.a.	1.99	10	6.01
28-63	Bw	3	21	76	SiL	1.14	9	6.39
63-(90)	ВС	3	21	76	SiL	0.75	8	6.88

Soil Organic Matter Stock and Fine Roots Biomass


Fine Roots Biomass and Soil Organic Matter stocks (0-40 cm depth) at each plot type.

Plot type	average	max	min	Q1	Q3
FRB_beech	3.2	5.5	1.2	1.2	4.1
SOM_beech	162.9	213.3	128.5	147.6	170.1
FRB_spruce	3.4	10.2	0.0	1.5	3.9
SOM_spruce	140.9	224.5	56.6	124.2	162.6
FRB_fir	6.5	13.8	1.2	2.3	11.0
SOM_fir	95.5	143.3	78.6	79.3	97.6

RESULTS

Assesing relationships between aboveground biommass and belowground biomass (soil organic matter stock and fine roots biomass) and selected abiotic factors

Predictors group	Detailed data	Abbreviations
Aboveground	Live woody tree biomass	AGB
biomass stock	Litter mass	litter
	Silt content	Silt
Soil properties	Clay content	Clay
	рН	рН
	C/N	C/N
Abiotic factors	Elevation	Elev
	Aspect	Aspect
	Slope	Slope
	Mean annual precipitation	MAP
	Mean annual air temperature	MAT

Relative importance of predictors with 95% bootstrap confidence intervals (LMG method, metrics are normalized to sum 100%):

- A) Fine Roots Biomass 0-40 cm (R2 = 54.44%,);
- B) Soil Organic Matter stock 0-40 cm (R2 = 54.79%).

CONCLUSIONS

- * the largest amount of biomass both aboveground and belowground was found in beech-dominated forests
- no statistically significant correlations were noted between aboveground biomass (live woody tree biomass from the forest inventory) and belowground biomass (soil organic matter and fine roots) found under beech-, spruce- and fir-dominated stands (i.e. secondary succession) atop Cambisols in the studied humid mountain-type area
- belowground biomass (i.e. SOM and FRB) is affected for the most part by abiotic factors such as morphologic position, climatic conditions, and soil properties
- we recommend using the results of multiple, fine-scale studies on the environmental background (i.e. biotic and abiotic factors) and forest management history for biomass and carbon modelling. Employing the same models may be an erroneous strategy for different study sites because of local environmental factors that strongly determine aboveground and belowground biomass stock