Comprehensive global climate impact assessment for crop yields

Christoph Müller1,
James Franke2, Jens Heinke1, Jonas Jägermeyr1,2,3, Alexander Ruane3, Joshua Elliott2, Elisabeth Moyer2, Marie Dury4, Pete Falloon5, Christian Folberth6, Louis Francois4, Tobias Hank7, Cesar Izaurralde8, Ingrid Jacquemin4, Curtis Jones8, Wenfeng Liu9, Stefan Olin10, Thomas A. M. Pugh11, Ashwan Reddy8, Karina Williams5, Florian Zabel7

1 Potsdam Institute for Climate Impact Research, Germany 2 University of Chicago, USA 3 NASA, USA 4 University of Liège, Belgium 5 Met Office Hadley Centre, United Kingdom 6 International Institute for Applied Systems Analysis, Austria 7 Ludwig-Maximilians-Universität, Germany 8 University of Maryland, USA 9 EAWAG, Switzerland 10 Lund University, Sweden 11 University of Birmingham, United Kingdom
Climate change impact assessments are often incomplete

- Sparse sampling of scenarios, models and crops
- Very high computational requirements
- Large uncertainties in drivers (climate scenarios, management) and modeled responses make interpretations of results from sparse sampling difficult
- We here employ potent, light-weight crop model emulators for
 - 9 different global gridded crop models
- to simulate crop yield impacts across the full CMIP5 and CMIP6 climate projections for
 - RCP2.6,
 - RCP4.5, and
 - RCP8.5
Step 1, the basis: the CTWN-A Experiment

The CTWN-A data cube: Regular disturbances of 31-year AgMERRA weather data

- **Carbon dioxide**: 360, 510, 660, 810 ppm ($n_C=4$)
- **Temperatures**: -1°C to +6°C, skipping 5°C ($n_T=7$)
- **Water supply**: -50 to +30, skipping -40 + fully irrigated ($n_W=9$)
- **Nitrogen supply**: 10, 60, 200 kgN/ha ($n_N=3$)
- **Adaptation**: regain lost growing season under warming (yes/no)

The full CTWN-A experiment is described by [Franke et al. (2019)](https://doi.org/10.1029/2019ER005799).
Step 2: The CTWN-A crop yield emulators

The CTWN-A emulators are trained on the CTWN-A data cube, fitting a 3rd-order polynomial regression model

- for each 0.5° grid cell, crop and crop model with
- C, T, W, and N as regressors and
- fitting individual models for irrigated and rainfed as well as adapted (A1) and non-adapted (A0) systems.

They can well reproduce simulated climate change impact scenarios, including simulations based on GCM projections with inter-annual variability.

The full CTWN-A emulator suite is described by Franke et al. (2020).
Step 3: the CMIP5 and 6 archives

- All models that provided monthly daily mean near surface air temperature (tas) and monthly precipitation (pr) values
- CMIP5: 45 models, CMIP6: 29 models
Step 6a: growing season changes (1980-2010 vs. 2069-2099) in T

- CMIP6 cooler in RCP2.6 and warmer in RCP8.5
- ensemble and ensemble range smaller in CMIP6
Step 6b: growing season changes (1980-2010 vs. 2069-2099) in P

- wetter future, but CMIP6 dryer than CMIP5
- ensemble and ensemble range smaller in CMIP6
Step 7: emulated yield impacts

CMIP6, RCP8.5, all crop combined

change in global productivity [-]

year (AD)

2020 2040 2060 2080

min/max +/- 1SD

CARAIB EPIC-TAMU LPJmL

GEPIc PEPIC PROMET

JULES pDSSAT

LPJ-GUESS median

EGU 2020, 8. May 2020. All rights with the authors.
Results: more uncertainty in impact models than in climate projections

EGU 2020, 8. May 2020. All rights with the authors.
Results: ... and even stronger so in CMIP5
Response to CO$_2$ strongly affects crop model uncertainty share

Seasonal cycle of crop model contribution to overall variance in SSP1, RCP 2.6; SSP2, RCP 4.5; SSP5, RCP 8.5.

CMIP6, static [CO$_2$]
Conclusions

• The GGCMI CTWN-A experiment-based emulators (Franke et al. 2020) allow for an unprecedentedly large ensemble of crop yield projections, which can be employed to assess the full breadth of future climate scenarios

• Broad range of possible climate impacts projected for productivity of major crops

• There are substantial differences in
 • regional responses
 • crop model responses, especially with respect to the effects of elevated [CO₂]

• Next steps
 • better analysis of crop model specifics that lead to strong deviation in projected impacts
 • improve global management data to better represent diverse crop management systems in crop model simulations
References

• The GGCMI project

• Phase 1:

• Phase 2:
Thanks and invite

• Thanks to all GGCMI participants and data suppliers
• Come and join, Phase 3 (improved remake of the ISIMIP fast track in 2012) just starting
 • https://agmip.org/ag-grid-2/
 • https://www.isimip.org/
• We provide access to a very large data set on crop yields, input data and secondary outputs to help with your own analysis