Methane emissions from shale gas production sites in Sichuan, China
(EGU2020-20729)

Ming Xue\textsuperscript{1,2}, Yiwei Zhao\textsuperscript{1,2,3}, Jun-xin Fan\textsuperscript{1,2}, Dongdong Cao\textsuperscript{1,2}

1. State Key Laboratory of Petroleum Pollution Control
2. CNPC Research Institute of Safety and Environmental Technology
3. China University of Petroleum

May 2020
Background

- Shale Gas Production Boosting in China in Recent Years
- Climate Challenge caused by Oil and Gas Production are Raising Attention
- Nine major emission source including Pneumatic Controllers, etc. were identified

Shale Gas Production in China
(Modified from Zheng et al., 2018)

Overview of Shale Gas Production Process
(Dzombak et al., 2011)
Methane emission factors are from the Guidebook of 2005
Instead of component-level, most emission factors are based on facility-level, especially for natural gas production

<table>
<thead>
<tr>
<th>Natural Gas Exploration</th>
<th>Fugitive</th>
<th>Venting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellhead</td>
<td>2.50 ton/(yr • each)</td>
<td>-</td>
</tr>
<tr>
<td>Gas Gathering Station</td>
<td>27.9 ton/(yr • each)</td>
<td>23.6 ton/(yr • each)</td>
</tr>
<tr>
<td>Metering/Distributing Station</td>
<td>8.5 ton/(yr • each)</td>
<td>-</td>
</tr>
<tr>
<td>Gas Storage Station</td>
<td>58.4 ton/(yr • each)</td>
<td>10.0 ton/(yr • each)</td>
</tr>
<tr>
<td>Natural Gas Processing</td>
<td>403.4 ton/1 bcm</td>
<td>138.3 ton/1 bcm</td>
</tr>
<tr>
<td>Natural Gas Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor Station</td>
<td>85.05 ton/(yr • each)</td>
<td>10.05 ton/(yr • each)</td>
</tr>
<tr>
<td>Metering Station</td>
<td>31.50 ton/(yr • each)</td>
<td>13.52 ton/(yr • each)</td>
</tr>
<tr>
<td>Pipelines</td>
<td>0.85 ton/(yr • each)</td>
<td>5.49 ton/(yr • each)</td>
</tr>
<tr>
<td>Pigging Station</td>
<td>-</td>
<td>0.001 ton/(yr • each)</td>
</tr>
</tbody>
</table>

(NDRC, 2014)
Background

Study Area

Shale Gas Region

Annual Production of the sub-basin: 0.5 billion m³ dry gas
Investigation Period: Dec. 25, 2019 to Jan. 5, 2020
Type: Well sites (18 sites with 79 wells)
Background

- Basic Setting for Downwind Measurements and Methane Mapping
  - Downwind Measurements (OTM33A):
    - Picarro® G2301, McGill® 3D wind anemometer
  - Site Patrolling:
    - Picarro® G4302, GPS
• Our Investigation tried to answer the following questions:

1. What’s the major methane emission source for the shale gas sites?

2. What’s the methane emission rate for the shale gas well sites?
Methane Emission Source

- Flowback water tank was the major source
- Chemical injection pumps were from 2 sites
- Leakage from valves were fixed after inspection
Methane Emission Source

- **Pneumatic Controller**

  - Pneumatic controllers from separators were mostly no-bleed or low-bleed
  - Well sites constructed after 2018 used electric controllers
  - All the controllers for chemical injection pumps were natural-gas driven

![Pneumatic Controller Pie Chart]

- Pneumatic Controllers for separators, 24%
- Pneumatic Controllers for chemical injection, 24%
- Electrical Controllers, 52%
Methane Emission Source

- Methane Mapping

- Highest methane concentration inside the sites from 2.54 to 459 ppm
- Over 55% of the sites has the highest methane concentration <50 ppm
# Methane Emission Rate

- Application of vehicle-based measurements

<table>
<thead>
<tr>
<th>Site No.</th>
<th>Average wind speed (m/s)</th>
<th>Methane Release Rate (kg/hr)</th>
<th>Stability Class (PGI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0.3~0.8</td>
<td>0.02~0.2</td>
<td>1.5</td>
</tr>
<tr>
<td>11</td>
<td>0.3~0.8</td>
<td>0.02~0.2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0.3~0.8</td>
<td>0.02~0.2</td>
<td>3</td>
</tr>
</tbody>
</table>

[Station 11](#) [Station 3](#)
Take home Message

- Application of electric controllers could reduce methane emission from shale gas development in China
- Flowback water tank is the major source of shale gas production sites, and mitigation options need to be considered.
- In mountainous areas such as Sichuan Basin, China, methane quantification methods other than OTM-33A may be applied.
Contact:

Ming Xue
Ph.D/Senior Engineer
Rm 615, No.1 Huanghe North Street,
Changping District, Beijing 102206, China
Tel: +86 10 8016 9570  Email: mxue@cnpc.com.cn

Funding Info:

National Key Science and Technology Projects of China (Grant No. 2016ZX05040-004) and CNPC Science and Technology Development Projects (Grant No. 2016E-1208).

References:

National Development And Reform Commission NDRC, 2014.