On associating significance levels with temporal changes in empirical orthogonal function analysis: a case study for ENSO

Gábor Drótos

IFISC (UIB-CSIC), Palma de Mallorca, Spain, and
MTA–ELTE Theoretical Physics Research Group, Eötvös University, Budapest, Hungary

EGU2020

CC BY 4.0

funded by the European Social Fund
Outline

Introduction

Time dependence of λ

Time dependence of EOF
Introduction

Time dependence of λ

Time dependence of EOF
Temporal changes of what?

- The variability in a field \(T(x; t) \) is described correctly by an ensemble of different realizations \(T_r(x; t) \) at any given fixed time instant \(t \).
- This variability can be decomposed to EOFs:
 \[
 T_r(x) = \sum_k PC_r^{(k)} EOF^{(k)}(x).
 \]
- An amplitude can be associated with each EOF: \(\lambda^{(k)} \).
- The EOFs and the amplitudes can be different in different “instants of time” (years): e.g., we have \(\lambda^{(k)}(t) \) (cf. EGU2020-2894; EGU2020-7527; EGU2020-12061; Maher et al., Geophys. Res. Lett. 45, 11,390, 2018; Haszpra et al., J. Climate 33, 3107, 2020; Haszpra et al., Earth System Dynam. 11, 267, 2020).
- How do we detect this time dependence if we can only estimate these quantities from a finite number of ensemble members?
- The methodology is the same for any \(k \), we thus omit the index \(k \).
Outline

Introduction

Time dependence of λ

Time dependence of EOF
Example: $\lambda^{(1)}$ of the Pacific SST field

MPI-GE historical + RCP8.5

Do we have a trend here?

Linear fit:

$$(2.08 \pm 2.06)^{-5} \text{[K/yr]}$$

\Longrightarrow Yes, we have?
Concept for testing

- A linear fit provides with an upper bound on the significance level for a temporal change, since
 - either the dependence is really linear (unlikely),
 - or not, so that the numerical result is meaningless, but then \(\lambda \) cannot be constant: there is a temporal change!
(Thanks to T. Bodai.)

- However: the errors \(\Delta \lambda \) are heteroskedastic and autocorrelated
 \(\implies \) the traditional significance level is incorrect
 \(\implies \) generalized least squares fit must be used

based on the variance-covariance matrix \(\sigma_{ij}^2 = \langle \Delta \lambda(t_i) \Delta \lambda(t_j) \rangle \).
Methodology

- Estimating the variance-covariance matrix of the errors: between years t_i and t_j:

$$\sigma^2_{ij} = \langle \Delta \lambda(t_i) \Delta \lambda(t_j) \rangle = \frac{1}{N} \langle PC(t_i)PC(t_j) \rangle,$$

and the latter can be estimated just by using the ensemble!

- Improving the estimation: fitting a Markovian form to the corresponding correlation matrix:

$$
\begin{pmatrix}
1 & \rho_1 & \rho_1 \rho_2 \\
\rho_1 & 1 & \rho_2 \\
\rho_1 \rho_2 & \rho_2 & 1
\end{pmatrix}
$$

(The fit is performed in a sliding window that is long enough to ensure independence on the window size.)
Do we have a trend here?

Linear fit:

\[
(2.08 \pm 2.06) \times 10^{-5} \text{ [K/yr]}
\]

\[
(0.11 \pm 2.39) \times 10^{-5} \text{ [K/yr]}
\]

\[\Rightarrow\] Not significant.
Subintervals in the example

Grayscale: insignificant, saturated: 5% significant slope.

Yes, there are significant trends! (Warning: multiple testing, see Wilks, BAMS 97, 2263, 2016.)

- Strengthening ENSO before 1900,
- forced fluctuations until 2050
- weakening in the late 21st century.
Outline

Introduction

Time dependence of λ

Time dependence of EOF
Future work...