A climate classification: Mediterranean, monsoon and westerlies climates

Xin-Gang Dai

RCE-TEA, Institute of Atmospheric Physics, Chinese Academy of Sciences

Ping Wang

Institute of Air Condition, Chinese Academy of Meteorological Sciences

Outline

- Land cover and Köppen climate classification
- Precipitation and seasonal portion
- Classification around Tibetan plateau
- Seasonal precipitation and temperature
- Minimum in precipitation variance
- Moisture flow and divergence
- Collocation pattern
- Conclusion

Global surface vegetation and Land Cover

Note: Mid-latitude deserts in Central Asia, Northwest China,
Others are subtropical deserts

Source: Global Land Cover SHARE database (GLC-SHARE; Beta-Release Version 1.0–2014), provided by the Food and Agriculture Organization of the United Nations (http://www.glcn.org/databases/lc_glcshare_en.jsp)

World Map of Köppen Climate Classification for 1901-2010

Köppen Climate type: BWk: Cold desert in mid-latitude

BWh: Hot desert

Mechanisms for mid-latitude cold desert:

1) Less precipitation; 2) seasonal precip. Distribution?

(Chen and Chen(2013), http://hanschen.org/koppen)

Annual precipitation and cold season portion for 1961-1990

The land cover is determined not only by climate annual precipitation, but also associated with its seasonal distribution. Mediterranean Climate zones leads land degradation in Northern Africa, Mid- and south part of Central Asia, West Asia and the east coast of the North America.

Climate Classification around Tibetan Plateau

Four climate regimes :

- East Asia Monsoon regime
 (Subtropical monsoon)
- 2. South Asia monsoon regime (Tropical monsoon)
- 3. Central Asia regime (CAR)
- 4. Westerly regime (WR)

CAR: Mid-latitude Mediterranean Climate

WR: Minimum in seasonal precipitation variance

Westerly regime: A zone with minimum in seasonal precipitation variance

Mechanisms for Land Degradation:

Mis-collocation between seasonal precipitation and temperature

- 1.Central Asia regime
 Prep.-Temp. in Anti-phase
- 4. Westerly regime Prep.-Temp. Out of phase

Seasonal Precipitation and Temperature in Monsoon and Mediterranean Regimes for 1961-1990

Seasonal precipcip. and Temperature

Signal peak

Monsoon area: in-phase

Mediterranean climate:

Anti-phase

Seasonal Precipitation and Temperature in Westerly Regime for 1961-1990

Westerly:

Temperature: Signal Peak

Precipitation: Multi peaks

out of phase

Yining CHN

-Uralsk KSA

Climate moisture transport in warm and cold seasons

Total/mean-wind moisture transport direction

Warm season:

Central Asia regime: Southward

Westerly regime: Eastward

East Asia regime: Northward

South Asia regime:

Northeastward

Cold season:

Central Asia regime: Northward

Westerly regime: Eastward

East Asia regime: Southward

South Asia regime: Westward

Transient eddy moisture transportation in warm and cold seasons

Transient eddy moisture transport direction

Warm season:

Central Asia regime: Northward Westerly regime: Northward East Asia regime: Northward South Asia regime: Northward

Cold season:

Central Asia regime: Northward Westerly regime: Northward East Asia regime: Northward South Asia regime: Northward

Mean-wind moisture divergence in warm and cold seasons

Mean-wind moisture divergence

Warm season:

Central Asia : divergence

Westerly regime: divergence

East Asia regime: convergence

South Asia: convergence

Cold season:

Central Asia: convergence

Westerly regime: convergence

East Asia regime: divergence

South Asia: divergence

Transient eddy moisture divergence in warm and cold seasons

Transient eddy moisture divergence

Warm season:

Central Asia: convergence

Westerly regime: divergence

East Asia regime: North-convergence

South-divergence

South Asia: divergence

Cold season:

Central Asia: convergence

Westerly regime: divergence

East Asia regime: convergence

South Asia: convergence

Collocation pattern of moisture flow for warm and cold seasons

Warm season:

Central Asia: hot & dry

southward moisture flow

moisture divergence

Westerly: hot & dry

eastward moisture flow

moisture divergence

East Asia: hot and wet

northward moisture flow

moisture convergence

South Asia: hot and wet

northeastward moisture flow

moisture convergence

Cold season:

cold & wet

northward moisture flow moisture convergence

cold & dry

eastward moisture flow moisture divergence

cold & dry

southward moisture flow moisture divergence

cool & dry

westward moisture flow moisture divergence

Collocation pattern of mean-wind and transient eddy moisture flow for warm and cold seasons

MMT: mean-wind moisture transport; TEMT: transient eddy moisture transport

Warm/cold season:

Central Asia: MMT divergence / convergence; TEMT convergence / convergence

Westerly: MMT divergence/ convergence; TEMT divergence/ divergence

East Asia: MMT convergence / divergence; TEMT divergence / convergence

South Asia: MMT convergence/divergence; TEMT divergence/convergence

Conclusion

- 1. Four climate regimes around Tibetan Plateau are of different characteristics in seasonal precipitation, moisture transport and divergence;
- 2. Central Asia regime (CAR) can be regarded as extended Mediterranean climate in midlatitude;
- 3. Westerly regime (WR) characterized as minimum in seasonal precipitation variance;
- 4. CAR or WR leads desertification or land degradation due to less precipitation and the mismatching between seasonal precipitation and temperature as well;
- Mediterranean climate caused dry climate in warm season of CAR leading to land degradation;
- 6. Land degradation in WR results from the moisture divergence of the transient eddy and the mean-wind in warm season;
- 7. Climate north-south moisture transport is almost determined by the stationary waves on mid-latitude westerly, which is associated with the uplift of topography and plate motion in remote past.

Thank you and Merci bien!