

Geological mapping in the offshore domain: unravelling the tectonic history of the Scotia Sea

GEOM

Anouk Beniest and Wouter Schellart

Why are offshore geological maps useful?

- 1. Less-time consuming, economically advantageous method for mapping offshore domains
- 2. Help us understand tectonically complex and inaccessible (submerged) areas
- 3. Serve as guidelines for future expeditions in remote areas

#shareEGU20 EGU General Assembly 2020 <u>TS 14.1 Celebrating the 100th birth anniversary of Marie Tharp</u>

Contact: abeniest@geomar.de

STEP 1: Harvesting of publicly available geological and geophysical data

(†)

EarthChem Portal, PetDB, Lehnert et al., 2000

How: Characterize rock-types

Lithology	Colour	Gravity signal	Magnetic pattern	Bathymetric features
Basalt		450-500	Clear striped pattern	Regular relief visible with parallel running features
Basaltic-andesite		500-550	Unclear striped pattern	Elevated plateaus
Dacite		300	No pattern	Not observed on bathymetry
Volcanic island (basalts)		400-500	No pattern	Circular, cone-shaped features, with or without crater
Alkali basalt		100-200	No pattern	Not observed on bathymetry
Mantle material		500	No pattern	Not observed on bathymetry
Intrusive material		-200	No pattern	Not observed on bathymetry
Metamorphic and/or sedimentary rock		250-350	Uniform anomaly	Elevated features, chaotic surface pattern
Volcanoclastic		400-450	No pattern	Smooth, more elevated surface around circular features. Sometimes with fan-like structure
Oceanic sediments		400-450	Striped pattern	Smooth surface, predominantly in lower areas

and the second second

Every rock-type has a unique geophysical signature.

This signature is a combination of

- The gravity anomaly signal (e.g. higher, positive anomaly is denser material)
- The magnetic pattern

 (e.g. striped pattern is typical for mafic material)
- Bathymetric expression

 (e.g. rough surface, smooth surface, (a)symmetric appearance...)

STEP

Beniest and Schellart, in review

STEP 2: Draw structural and lithological map

 (\mathbf{i})

ΒY

CC () BY

STEP 3a: Interpret crustal cross-sections combined with mantle tomography

STEP 3b: Interpret crustal cross-sections combined with mantle tomography

i)

mantle flow around the slab edge at the South Sandwich

IV. Frontal part of the subducting slab at the South Sandwich Trench

STEP 4

STEP 3c: Interpret ages of the crustal parts

 (\mathbf{i})

STEP 4: Draw tectonic history of the Scotia Sea area

 (\mathbf{i})

(cc)

STAR1

The End: Conclusion

1. It is possible to make a geological map of the publicly available geological and geophysical data

2. Combining crustal cross-sections with mantle tomography is a powerful tool to identify mantle structures

3. The Scotia Sea has a multi-phase rift- and spreading history

