Calling for participants:

A new multi-site evaluation project for land surface models in urban areas

Mathew Lipson^{1,2}, Sue Grimmond², Martin Best³

with Gab Abramowitz, Andrew Pitman, Martin De Kauwe, Aristofanis Tsiringakis, Andrew Coutts, Helen Ward

1: 🐺 UNSW

3:

Get involved, email: met-urban-plumber@lists.reading.ac.uk

Background

In 2010/2011 **PILPS-Urban¹** evaluated 32 models at two urban sites. Since then:

- new and improved models have been developed, many including vegetation
- a growing interest for regional weather/climate simulations to include urban systems

This project will ask:

- 1. How do different modelling approaches compare across a wide range of sites?
- 2. Does providing more detailed site morphology information improve performance?
- 3. Are models utilising available meteorological information effectively?
- 4. Have recent model developments improved performance?

¹PILPS-Urban: The First International urban Land Surface Model Comparison Project (Grimmond et al. 2011) doi: <u>10.1002/joc.2227</u>

Who should get involved?

- Those with models:
 - that simulate exchange between land/atmosphere from meteorological inputs
 - can output a single point representative of neighbourhood-scale exchange
 - can model different urban forms, density, amount of vegetation etc.
 - can model long periods (10 years)
 - i.e. land surface models predicting energy partitioning at the Earth's surface

Participating models will range from those focussed on modelling vegetation to complex urban systems

Who should get involved?

- Those with observations:
 - including radiant/turbulent fluxes, temperature, humidity, pressure, rainfall & wind
 - above roofs in the inertial sub-layer (constant-flux layer), representing neighbourhood
 - Should be 30-60 min intervals for > 1 month, preference for multi-year
 - willing to share data with modelling participants
 - i.e. urban flux tower observations

Sites will range from highly vegetated to highly urbanised in various climates

Project outline

- All simulations are offline (not coupled to full atmosphere model)
- Two phases:
 - Phase 1: (May 2020 Nov 2020) a single site Preston Melbourne, Australia¹
 - Phase 2: (Nov 2020 Mar 2021) multiple (10-20) sites
- In both phases, two experiments:
 - A **baseline** simulation using primarily model default configuration
 - A **specific** simulation configured with more detailed site information
- Modellers may choose to participate in either or both phases

¹Observations from Coutts et al. 2007: doi: <u>10.1002/joc.2227</u>

Participants will be provided with:

- Site data table (in text form)
 - information is standard at all sites, allowing for automated configuration of models
- Meteorological forcing (in text and netCDF form)
 - Meteorological forcing includes 10-year spinup period derived from ERA5¹.
 - Spinup will help soil equilibrate to local conditions
- Python scripts to help convert input/output and automate model configuration

¹ERA5: Copernicus Climate Change Service (C3S) (2017): <u>https://cds.climate.copernicus.eu/cdsapp#!/home</u>

Example of site data table (site 1)

id	parameter	value	units	source									
Parameters 1-10 should be used in the baseline simulation only													
1	latitude	-37.73	degrees_north	Coutts et al. 2007a									
2	longitude	145.01	degrees_east	Coutts et al. 2007a									
3	ground_height	93.0	m	Coutts et al. 2007a									
4	measurement_height_above_ground	40.0	m	Coutts et al. 2007b									
5	utc_standard_time_offset	10.0	hour	timeanddate.com									
6	impervious_plan_fraction	0.62	1	Grimmond et al. 2011									
7	tree_plan_fraction	0.225	1	Grimmond et al. 2011									
8	grass_plan_fraction	0.15	1	Grimmond et al. 2011									
9	bare_soil_plan_fraction	0.0	1	Grimmond et al. 2011									
10	water_plan_fraction	0.005	1	Grimmond et al. 2011									
	Any or all parameters 11-25 can be used in the specific simulation (optional)												
11	roof_plan_fraction	0.445	1	Grimmond et al. 2011									
12	road_plan_fraction	0.13	1	Grimmond et al. 2011									
13	footpath_plan_fraction	0.045	1	Grimmond et al. 2011									
14	building_mean_height	6.4	m	Grimmond et al. 2011									
15	tree_mean_height	5.7	m	Nice et al. 2018									
16	roughness_length_momentum	0.4	m	Grimmond et al. 2011									
17	displacement_height	4.57	m	Macdonald et al. 1998									
18	canyon_height_width_ratio	0.42	1	Grimmond et al. 2011									
19	wall_to_plan_ratio	0.4	1	Grimmond et al. 2011									
20	average_albedo_at_midday	0.15	1	Grimmond et al. 2011									
21	resident_population_density	415.78	person/km2	Grimmond et al. 2011									
22	anthropogenic_heat_flux_mean	11.0	W/m2	Best and Grimmond 2016									
23	topsoil_clay_fraction	0.18	1	openlandmap.org									
24	topsoil_sand_fraction	0.72	1	openlandmap.org									
25	topsoil_bulk_density	1230	kg/m3	openlandmap.org									

EGU 2020: Urban-PLUMBER: A new evaluation and benchmarking project for land surface models in urban areas

Get involved, email: met-urban-plumber@lists.reading.ac.uk

Meteorological forcing (sample)

Date	Time	SWdown	LWdown	Wind_E	Wind_N	PSurf	Tair	Qair	Rainf	Snowf
YYYY-MM-DD	HH:MM:SS	W/m2	W/m2	m/s	m/s	Ра	К	kg/kg	kg/m2/s	kg/m2/s
2003-01-01	00:00:00	368.06	354.68	6.15	-4.13	99048	290.43	0.00748	4.05E-05	0
2003-01-01	00:30:00	439.75	348.56	6.34	-3.88	99066.2	290.86	0.007403	4.08E-05	0
2003-01-01	01:00:00	511.43	342.43	6.53	-3.63	99084.4	291.29	0.007326	4.12E-05	0
2003-01-01	01:30:00	544.41	349.29	6.19	-3.1	99094.1	291.56	0.007328	4.78E-05	0
2003-01-01	02:00:00	577.4	356.15	5.85	-2.58	99103.9	291.83	0.00733	5.43E-05	0
2003-01-01	02:30:00	518.66	360	5.74	-2.19	99093.2	291.96	0.007304	4.78E-05	0
2003-01-01	03:00:00	459.92	363.84	5.62	-1.8	99082.6	292.08	0.007279	4.12E-05	0
2003-01-01	03:30:00	425.05	359.56	5.61	-1.39	99089.7	291.92	0.007334	4.64E-05	0
2003-01-01	04:00:00	390.18	355.28	5.59	-0.98	99096.8	291.75	0.007389	5.16E-05	0
2003-01-01	04:30:00	355.15	359.89	5.76	-0.6	99113.6	291.73	0.00745	4.69E-05	0
2003-01-01	05:00:00	320.13	364.5	5.94	-0.22	99130.5	291.7	0.007511	4.22E-05	0
2003-01-01	05:30:00	274.34	362.01	5.7	0.33	99156.6	291.23	0.007458	2.42E-05	0
2003-01-01	06:00:00	228.55	359.51	5.46	0.89	99182.7	290.76	0.007404	6.23E-06	0
2003-01-01	06:30:00	195.9	366.41	5.47	1.4	99209.3	290.5	0.007505	7.61E-06	0

Outputs

- **Paper 1:** Comparison of urban and non-urban LSM performance at a suburban site. This will also assess how developments have affected urban model performance since the last major comparison at the same site (Grimmond et al., 2011)¹.
- Paper 2: Model performance at multiple sites. This will assess how different modelling approaches perform at different points along the urban/vegetation fraction continuum. Analysis will draw on the benchmarking evaluation methods of PLUMBER (Best et al., 2015).
- Paper 3 (potential): For observational participants that are interested; a synthesis of gapfilled, quality-controlled flux tower observations useful for driving models.

Those providing model or observational data will be invited as authors on relevant papers

¹PILPS-Urban: The First International urban Land Surface Model Comparison Project (Grimmond et al. 2011) doi: <u>10.1002/joc.2227</u>

Timeline

Document: Urban-PLUMBER timeline												= ¢	bart	icip	ant	act	ion							
Version: Thursday, 26 March 2020														= ¢	oroj	ect	acti	on						
	2020											2021												
	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D	J	F	Μ	А	Μ	J	J	А	S	0	Ν	D
flux-tower data submissions																								
Phase 1 (single site)																								
initial submission		Phase 1 initial submissions due 1 August 2020																						
respond to initial issues																								
secondary submissions (if required)											Phase	e 1 s	eco	ndar	'y su	bmis	sion	s du	e 1 N	oven	nmb	er 20	20	
analysis																								
prepare and revise manuscript																								
co-author comments on manuscript																	-							
Phase 2 (multi site)											¥				Î									
open for submissions											Phase 2 submissions due 1 March 2021													
analysis																								
prepare and revise manuscript																			\downarrow					
co-author comments on manuscript																								

Phase 1 opens this month

EGU 2020: Urban-PLUMBER: A new evaluation and benchmarking project for land surface models in urban areas

Get involved, email: met-urban-plumber@lists.reading.ac.uk

Thank you

Register your interest in providing model or observational data, email:

met-urban-plumber@lists.reading.ac.uk

Mathew Lipson^{1,2}, Sue Grimmond², Martin Best³

with Gab Abramowitz, Andrew Pitman, Martin De Kauwe, Aristofanis Tsiringakis, Andrew Coutts, Helen Ward

1: 🝯 UNSW

3: