Evaluating Light Use Efficiency (LUE) Models and Parameter-upscaling Methods

Shanning Bao (<u>sbao@bgc-jena.mpg.de</u>), Fabian Gans, Simon Besnard, Sujan Koirala, Alvaro Moreno, Sophia Walther, Ulrich Weber, Martin Jung, Miguel Mahecha, and Nuno Carvalhais

LUE model structure

 $GPP = \varepsilon_{max} \cdot APAR \cdot fT \cdot fVPD \cdot fW \cdot fL \cdot fCI$

1. Which is the best model?

Data

•177 EC towers (Climate + GPP)

•MODIS

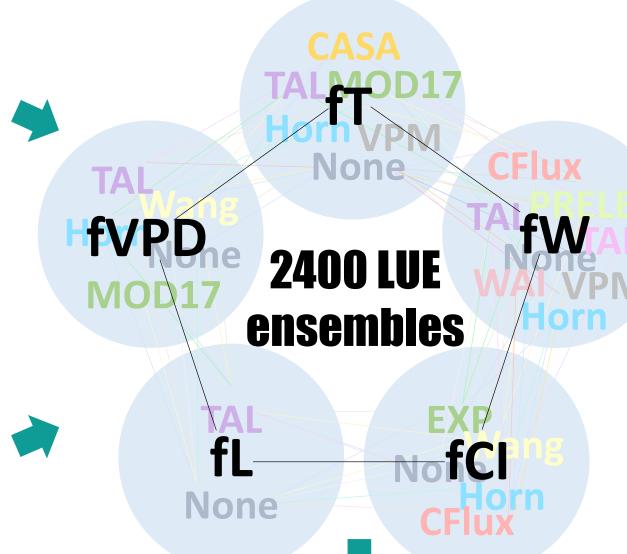
Parameters

Optimization

(Trust-Region-Reflective Least Squares Algorithm)

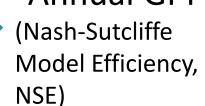
•Cost function

(GPP, ET and fX)



Assessment

- Daily GPP
- Weekly GPP
- Monthly GPP
- •Annual GPP



fX: Climate sensitivity function;T: Temperature; VPD: vapor pressure deficit;

W: soil water indicator; **L**: APAR corrector; **CI**: cloudiness indicator

Best LUE model (NSEmedian, d/w/m/a = 0.73/0.79/0.84/0.54)

 $GPP = \varepsilon_{max} \cdot APAR \cdot fT_{CASA} \cdot fVPD_{TAL} \cdot fW_{Horn} \cdot fL_{TAL/None} \cdot fCI_{EXP}$

2. How to upscale parameters?

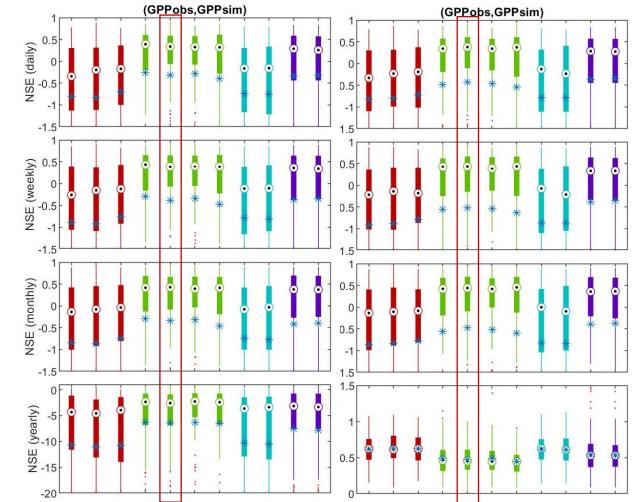


Fig.1 NSE of GPP using upscaled parameters in cross validation for model I (left) and model II (right)

- Mean of per climate type (Koeppen-Geiger, K-G)
- Mean of per Plant Functional Type (PFT)
- Mean of per PFT and K-G (first 2 characters)
- Median of per K-G
- Median of per PFT
- Median of per PFT and K-G (first 2 characters)
- Median of per plant type
- Random Forest (RF) Regression using bioclimatic variables and corresponding vegetation indexes (VI)
- RF **Regression** using bioclimatic variables
- **Site similarity** using PFT, VI and mean seasonal cycle (MSC) climate variables
- Site similarity using PFT, VI, MSC climate and ET

Take home message

- On daily, weekly, monthly and yearly scale, 36 models were significantly better than the others.
- The best two models as above had the best global NSE (NSE for all sites) over other models for the four time scales.
- Using the median parameters per PFT had the best performance to upscale parameters from site-level to global-level.
- We further explore the relationship between parameters/climate sensitivity functions and environmental drivers as well as biophysical plant traits using global retrieval of SIF.

Functional Responses of Primary Productivity to Climate

SHANNING BAO, FABIAN GANS, SIMON BESNARD, SUJAN KOIRALA, ALVARO MORENO, SOPHIA WALTHER, ULRICH WEBER, MARTIN JUNG, MIGUEL MAHECHA, AND NUNO CARVALHAIS

Tuesday, May 5, 2020

Light Use Efficiency (LUE) models

$$GPP = \varepsilon_{max} \cdot APAR \cdot fT \cdot fVPD \cdot fW \cdot fL \cdot fCI$$

GPP: Gross Primary Productivity

 ε_{max} : maximum light use efficiency

APAR: Active Photosynthetically Absorbed Radiation

fT: Temperature sensitivity function

fVPD: Vapor Pressure Deficit sensitivity function

fW: soil Water indicator sensitivity function

fL: Light (APAR) sensitivity function

fCI: Cloudiness Index sensitivity function

MOD17 **CFlux** MOD17 TAL TAL TAL TALHorn Wang none CASA CASA VPM **EXP** Horn Wang CFlux Horn VPM PRELES none none none none

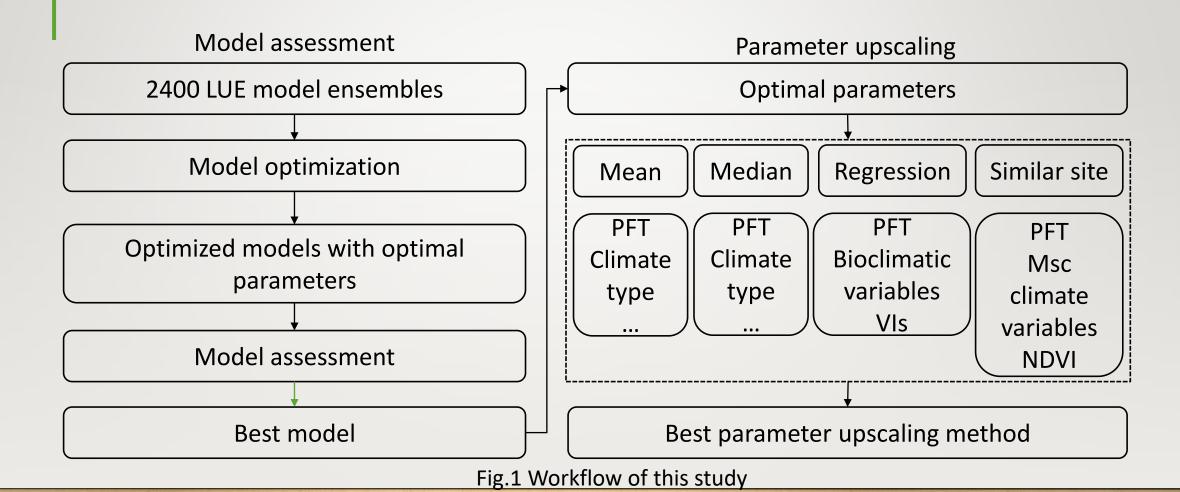
Questions

- Which is the best LUE model?
- Which are the best climate sensitivity functions of GPP?
- Does the climate sensitivity change with environmental condition and biophysical traits of vegetation?

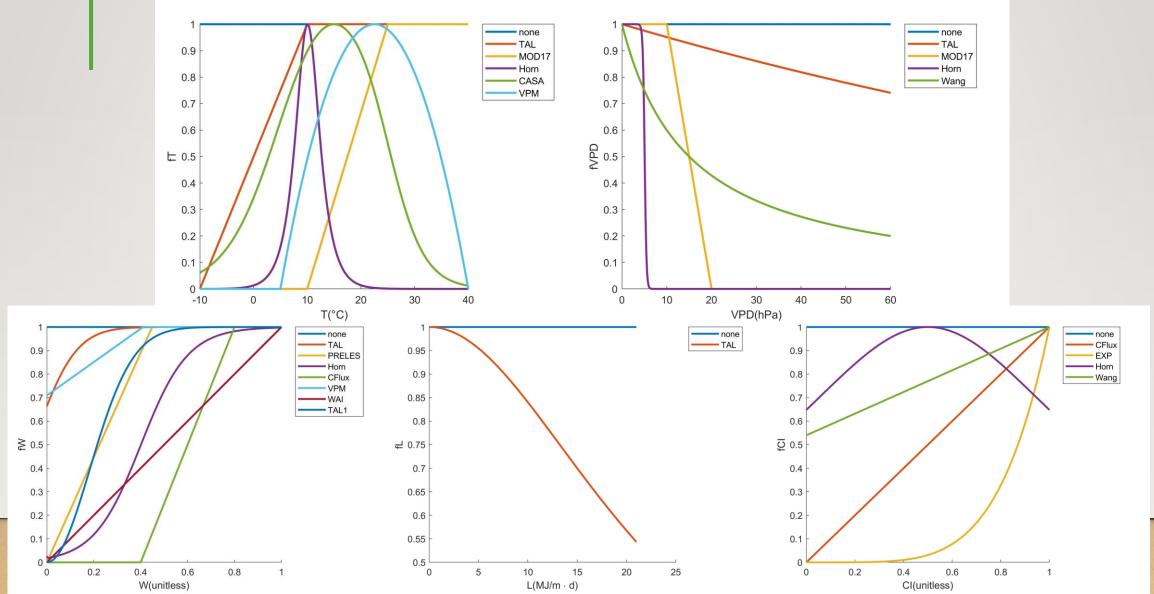
Assumptions

- The LUE model which has the best model efficiency on different time scales and less parameters is the best model.
- The climate sensitivity functions (fXs) of the best LUE model can best represent the response of vegetation photosynthesis rate to climate change.
- The model parameters which controls the fXs trends change with environmental condition and biophysical traits of vegetation.

Experiment design



Climate sensitivity functions in LUE models



Results

1. Best model selection

$$GPP = \varepsilon_{max} \cdot APAR \cdot fT_{CASA} \cdot fVPD_{TAL} \cdot fW_{Horn} \cdot fL_{TAL} \cdot fCI_{EXP} \quad (I)$$

$$GPP = \varepsilon_{max} \cdot APAR \cdot fT_{CASA} \cdot fVPD_{TAL} \cdot fW_{Horn} \cdot fL_{None} \cdot fCI_{EXP} \quad (II)$$

fX	Equation	Reference	
${ m fT}_{ m CASA}$	$\frac{2 \times \cosh(5 \times T_{ab})^{2}}{\left(\cosh\left(T_{ab} \times \left(T_{opt} - T\right)\right) + \cosh(10 \times T_{ab})\right)}$ $, T_{ab} = \left(T < T_{opt}\right) \times T_{a} + \left(T \ge T_{opt}\right) \times T_{b}$	(Potter, Randerson et al. 1993)	
$\mathrm{fVPD}_{\mathrm{TAL}}$	$e^{\kappa imes VPD}$	(MÄKelÄ, Pulkkinen et al. 2007)	
$\mathrm{fW}_{\mathrm{Horn}}$	$1/\left(1 + e^{k_W \times (WAI_f - W_I)}\right)$ $WAI_{f_k} = (1 - \alpha) \times WAI_k + \alpha \times WAI_{f_{k-1}}, \text{ k is time}$	(Horn and Schulz 2011)	
fL_{TAL}	$1/(\gamma \times APAR + 1)$	(MÄKelÄ, Pulkkinen et al. 2007)	
fL_{None}	1	-	
fCI_{EXP}	CI^{μ}	This study	

Results

1. Best model selection

The Nash-Sutcliffe Model Efficiency(NSE) of the two models:

NSE	Model	Daily	Weekly	Monthl y	Annual
Median of site NSE	I	0.726	0.788	0.836	0.544
	II	0.724	0.782	0.834	0.510
Global NSE	I	0.755	-	-	-
	II	0.753	-	-	-

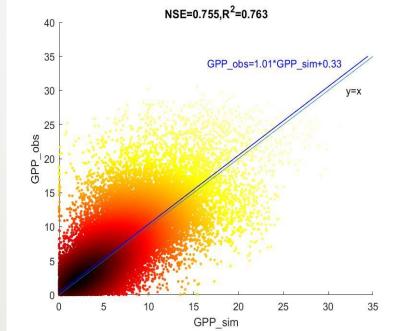
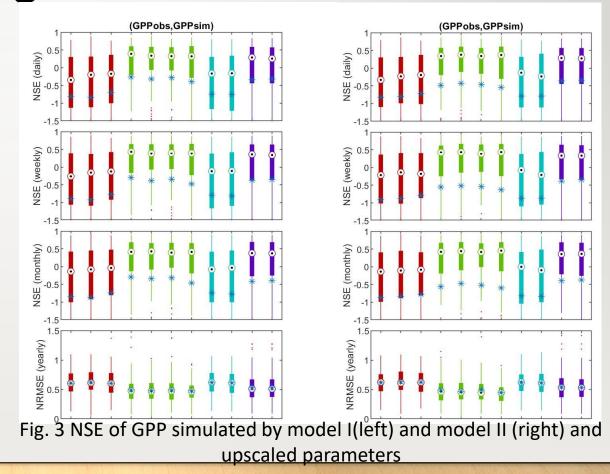


Fig.2 Model I simulated GPP against observed GPP (color represent the density)

Results 2. Parameter upscaling

- Mean of per climate type (Koeppen-Geiger, K-G)
- Mean of per Plant Functional Type (PFT)
- Mean of per PFT and K-G (first 2 characters)
- Median of per K-G
- Median of per PFT
- Median of per PFT and K-G (first 2 characters)
- Median of per plant type
- Random Forest (RF) Regression using bioclimatic variables and corresponding vegetation indexes (VI)
- RF Regression using bioclimatic variables
- Site similarity using PFT, VI and mean seasonal cycle (MSC) climate variables
- Site similarity using PFT, VI, MSC climate and ET



Conclusions

- On daily, weekly, monthly and yearly scale, 36 models were significantly better than the others.
- The best two models as above had the best global NSE (NSE for all sites)
 over other models for the four time scales.
- Using the median parameters per PFT had the best performance to upscale parameters from site-level to global-level.
- Since the limitation of sparse EC towers, we further explore the relationship between parameters/climate sensitivity functions and environmental drivers as well as biophysical plant traits using global retrieval of SIF.

Thanks for your attention!