N₂O and CH₄ emissions from cattle manure heaps in Kenya

Sonja Leitner, Dónal Ring, George Wanyama, Daniel Korir, David Pelster, John Goopy, Lutz Merbold,

EGU online, BG3.3 Gas exchange between soil, plants and atmosphere, 08 May 2020
Background – Agricultural GHG emissions & productivity in the global context

- **Africa** - 15% of agricultural GHG emissions come from Africa
- **Americas** - 25% of emissions related to manure

AFOLU GHG-emissions by sector

- Enteric fermentation
- Manure left on pasture
- Manure management
- Manure applied to soils
- Burning - savanna
- Synthetic fertilizer
- Rice cultivation
- Crop residues
- Cultivation org. soils
- Burning – crop res.

FAO, Tubiello et al. 2014
Low productivity, high GHG emissions of livestock in sub-Saharan Africa (SSA) → high yield-scaled GHG emissions

Productivity increase urgently needed to ensure food security & meet demand of growing population

Sustainable intensification, climate change adaptation & mitigation (co-benefit)

Herrero et al., PNAS, 2013 (Numbers are from 2010)
Smallholder mixed crop-livestock farms:

- 50% of agricultural workforce employed in livestock production
- Average farm size 0.5-2 ha
- Crops (e.g. maize, wheat, barley, tomatoes, onions, sunflower, ...)
- Few animals per farm (e.g. 2-5 cattle, some goats, sheep, chicken, pigs, ...)
- Cattle: Local and “improved” breeds (e.g. Boran x Friesian)
- Manure management common, manure as fertilizer

FAOSTAT, World Bank, ILRI
Research questions & hypotheses

What is the magnitude of \(\text{CH}_4 \) and \(\text{N}_2\text{O} \) emissions from manure heaps in Kenyan smallholder farming systems?

1. Due to feed scarcity (e.g. dry season) and poor quality of feeds, manure-borne \(\text{CH}_4 \) and \(\text{N}_2\text{O} \) emissions are lower in Kenya than in developed countries.

2. Manure from hungry cows emits less \(\text{N}_2\text{O} \) compared to well-fed cows because of higher N retention under sub-maintenance energy feeding.

3. Manure from cattle fed with tropical forage grasses has low N concentration and lower \(\text{N}_2\text{O} \) emission factors (% manure-N emitted as \(\text{N}_2\text{O}-\text{N} \)) compared to IPCC Tier 1 default \(EF_{\text{N}_2\text{O}} \) for solid manure storage.
1. Experiment: Sub-maintenance energy feeding trial

Setup:

- Location: Mazingira Centre, Nairobi, Kenya
- Animal feeding trial with Boran steers
- Diet at 3 levels of metabolic energy requirement (MER):
 - 120% MER (yummy)
 - 100% MER (ok)
 - 60% MER (hangry!)
- Manure incubation in uncovered heaps (n = 3 á 100 kg FM) for 5 months
- Daily to 3x/week gas sampling
1. Experiment: Sub-maintenance energy feeding trial

CH₄ flux highest in first 15 days

CH₄ emissions lower than IPCC Tier 1 default value

No difference in CH₄ emissions between MER treatments
1. Experiment: Sub-maintenance energy feeding trial

- **N₂O peak from day 5-40**
- **Manure from hungry cows emits less N₂O**
- **Manure N lower & C/N higher in hungry cows**
- **Emission factor 50% lower than IPCC Tier 1 default value**
2. Experiment:
Tropical forage grass feeding trial

Setup:
• Location: Mazingira Centre, Nairobi, Kenya
• Animal feeding trial with Boran steers
• Three tropical forage grasses (fed *ad libitum*)
 – Napier grass
 – Rhodes grass
 – Brachiaria grass
• Manure incubation in uncovered heaps (n = 3 × 100 kg FM) for 5 months
• Daily to 3x/week gas sampling
2. Experiment: Tropical forage grass feeding trial

- CH$_4$ flux highest in first 3 weeks
- No difference in manure moisture content
- Manure from Rhodes grass diet has lowest CH$_4$ emissions
- Again, CH$_4$ emissions lower than IPCC default values
- Carbon in Rhodes manure is less readily converted to CH$_4$
2. Experiment: Tropical forage grass feeding trial

- **N\textsubscript{2}O peak from day 5-40**

- **Manure C/N of forage grass diet 2x higher than “European-style” diet**

- **Cumulative N\textsubscript{2}O similar for all grasses**

- **Again, N\textsubscript{2}O emission factor below IPCC default value**
Conclusions

• Manure N concentration from African smallholder farms lower than in developed countries
• Current IPCC default factors for manure N_2O and CH_4 are too high compared to *in situ* measurements.
• This potentially invalidates current mitigation practices in SSA because baselines are incorrect, also reporting under UNFCCC is biased.

What needs to be kept in mind:

• Spatial variability (characteristics & intensity of farming systems varies across Africa)
• With agricultural intensification total N_2O and CH_4 emissions in SSA likely to go up
• However, with improved management (closed nutrient cycles) productivity can go up faster than emissions \Rightarrow GHG emissions intensities could go down
• Also, more productive and diverse systems are often more resilient to stresses.
Thank you for tuning in!

Acknowledgements:
Erick Kiprotich
Nelson Saya
Sheila Okoma
Stanley Mwangi
Paul Mutuo
Francis Njenga
Svenja Marquardt
Klaus Butterbach-Bahl

Dr. Sonja Leitner
International Livestock Research Institute (ILRI)
Mazingira Centre for Environmental Research and Education
Box 30709, Nairobi, Kenya
http://mazingira.ilri.org
s.leitner@cgiar.org

http://mazingira.ilri.org
s.leitner@cgiar.org