

Investigating preferential flow dynamics in idealized porous fracture networks via (quasi) 2-D lab experiments

Controls of fracture and matrix properties on flow behavior

EGU 2020, MAY 2020

F. Ruediger¹, H. Fehnker¹, J. Nimmo², and J. Kordilla¹

¹University of Goettingen, Geoscience Centre, Goettingen, Germany
²United States Geological Survey, Unsaturated Zone Flow Project Group, Menlo Park, CA, USA

Unsaturated flow in the vadose zone

How can we delineate the control of fractured porous media on flow behavior, especially on the fast preferential flow component, in the vadose zone?

Experimental lab approach: outcrop translation

Outcrop displaying characteristic fracture network features.

Intersection-types:

- crossing (X)
- abutting (Y)
- isolating (I)

Experiment:

- Simple orthogonal fracture network
- 12 × 6 sandstone slices
- Slice dimension: $5 \times 5 \times 1$ cm
- X-type intersections
- Fracture aperture: 1 mm
- Inflow rates: 0.75 3.00 ml/min
- Material used: Seeberger sandstone (effective porosity = 18.6 %)

Conceptual stages of outflow data

- I Water destributes in the fracture network and pore space
- t₁ First arrival; flow pathway between top and bottom established
- II Pore space adjacent to active fractures mostly reached its saturation limit and outflow dynamics are increasingly controlled by fracture (-network) properties alone
- III: System reaches steady state (outflow = inflow, not the case in this example)

Key control in stage I: matrix imbibiton

Observation:

- (1) Arrival time: $t_{1,glass} \ll t_{1,sandstone}$
- (2) Both show similar outflow pattern
- (3) Outflow fluctuations smaller for sandstone

Effect of porous media:

- strongly slowing down fracture flow in stage I
- dampening outflow fluctuations in stage II

Intersection-type and offset: impact on arrival times

Y-type intersection and horizontal offset.

Observation:

- Higher inflow rates result in earlier arrival times
- For a low flow rate a successive increase of the horizontal offset tends to increase arrival times, which is not noticable at higher rates

Conclusion and Outlook

- A sound implementation of the fracture flow retardation by the matrix is crucial when interested in arrival time predictions
- Once a preferential pathway is established between two locations via active fractures, imbibition soon becomes neglectable for flow dynamics
- Y-type intersections and horizontal offsets, which increase the traveling distance between top and bottom of the system (compared to X-type), show no significant correlation with arrival times for higher inflow rates on the scale of observation.
- Further analysis will place emphasis on a physicallybased analytical solution for the fracture-matrix interactions in stage I, and, on capturing the fracture network control on the outflow dynamics related to stage II

Percolation experiments in the field at comparable scales in summer/fall 2020.

Questions? Contact me: fruediger@gwdg.de