

Long-term evolution of evapotranspiration components in a semiarid forest using chambers measurement of soil evaporation

Rafat Qubaja, Dan Yakir, Madi Amer, Fyodor Tatarinov, Eyal Rotenberg, and Yakir Preisler Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel *With the help of the eco-physiological group

Aridity & Dry land expansion

 Aridity is measured by the aridity index (AI=P/PET), the ratio of annual mean precipitation (P, water supply) to potential evapotranspiration (PET; atmospheric demand).

- Drylands are defined as regions with AI < 0.65.
- Drylands cover 47% of the land area, and are projected to expand by ~12% by the end of the century.
- Is there enough water for Drayland afforestation?

5/1/2020 Temporal changes global dryland area

Methods

I. Study site(across 15 years; 2001-2016)

- Pine-trees (P. Halepensis)
- 55 years old
- 2800 ha
- Low P (286 mm)
- High T (26 °C daily mean July)
- Low AI (0.18)

Water budget components:

ET = Et + Es + Ei + Ea + S + D + F + Q

- *Es*: soil evaporation
- *Et*: transpiration
- Ea: soil adsorption
- Ei: interception
- S; D; F; and Q: are Storage; Leakage;
 Flow out; and Runoff ≈ 0

II. Eddy covariance: Evapotranspiration (ET)

IV. Sap flow (Granier system:Transpiration (Et)

III. Soil chambers: Soil evaporation (Es)

V. Interception (Ei)

Ei= P - (0.94 * P) - 0.76Shachnovich et al. (2008)

Results 1 - Long-term evolution of ET components in a semi-arid forest

- ☐ Long-term Evapotranspiration (ET) vs. Precipitation (P):
 - \Box ET = 262±15 mm y⁻¹
 - \Box P = 286±19 mm y⁻¹
 - ☐ ET/P>90%, P fully used

Across the long-term observation period (over 10 years)

- ☐ Canopy:
 - ☐ Et/ET (TR) increase 0.49 to 0.63 (+29%).
 - ☐ LAI increase 1.43 to 2.06 (+44%).
 - ☐ TR/LAI remained constant at ~0.31.
- ☐ Soil:
 - ☐ Es/ET decreased 0.39 to 0.26 (-34%).
 - ☐ Soil adsorption (Ea) ~5% of P.
 - Ea re-evaporation ~74% of the low Es in dry season; critical protection from soil drying.

5/1/2020

Results 2 - Long-term ET partitioning in a semi-arid forest

Validating the use of long-term flux records of ET partitioning

ET = mGPP + E

where E is the non-stomatal evaporation = Es+Ei (Scott and Biederman, 2017)

- \square E estimate of 6.8-9.0 mm month⁻¹ (82-108 mm y⁻¹), is similar to our direct Es estimate of 104 mm
- ☐ Using the long-term mean P value (287 mm) indicate mean E/P ratios of 0.28-0.38

Conclusions and take-home message

in water-limited environments, E1/P=0.94-1.0	7 of P, indicating full use of P.
☐ Mean Et/ET values are similar to global mean aridity index (PET/P; 5.5).	values (0.64 ± 0.13), attained at much higher

The water limited environments ET/D-0.04.1.07 of D indicating full use of D

- ☐ Es/P comprises a significant part of the water budget ~26%, Ea/P of ~5% can provide critical protection from soil drying.
- ☐ These results emphasize the competition between stomatal and non-stomatal water loss, and the importance of soil evaporation in low-density semi-arid forests, and reflect adjustments that indicate the potential for forestation in current and future dry regions.

Thank you!