Long-term evolution of evapotranspiration components in a semi-arid forest using chambers measurement of soil evaporation

Rafat Qubaja, Dan Yakir, Madi Amer, Fyodor Tatarinov, Eyal Rotenberg, and Yakir Preisler
Earth & Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel

*With the help of the eco-physiological group
Aridity & Dry land expansion

- Aridity is measured by the aridity index (AI=P/PET), the ratio of annual mean precipitation (P, water supply) to potential evapotranspiration (PET; atmospheric demand).

- Drylands are defined as regions with AI < 0.65.

- Drylands cover 47% of the land area, and are projected to expand by ~12% by the end of the century.

- Is there enough water for Dryland afforestation?
Methods

I. Study site (across 15 years; 2001-2016)

- Pine-trees (P. Halepensis)
- 55 years old
- 2800 ha
- Low P (286 mm)
- High T (26 °C daily mean July)
- Low Al (0.18)

II. Eddy covariance: Evapotranspiration (ET)

Water budget components:
\[ET = Et + Es + Ei + Ea + S + D + F + Q \]

- \(Es \): soil evaporation
- \(Et \): transpiration
- \(Ea \): soil adsorption
- \(Ei \): interception
- \(S; D; F; \text{ and } Q \): are Storage; Leakage; Flow out; and Runoff = 0

III. Soil chambers: Soil evaporation (Es)

IV. Sap flow (Granier system): Transpiration (Et)

\[Ei = P - (0.94 \times P) - 0.76 \]

Shachnovich et al. (2008)
Results 1 - Long-term evolution of ET components in a semi-arid forest

- Long-term Evapotranspiration (ET) vs. Precipitation (P):
 - ET = 262±15 mm y\(^{-1}\)
 - P = 286±19 mm y\(^{-1}\)
 - ET/P>90%, P fully used

Across the long-term observation period (over 10 years)

- Canopy:
 - Et/ET (TR) increase 0.49 to 0.63 (+29%).
 - LAI increase 1.43 to 2.06 (+44%).
 - TR/LAI remained constant at ~0.31.

- Soil:
 - Es/ET decreased 0.39 to 0.26 (-34%).
 - Soil adsorption (Ea) ~5% of P.
 - Ea re-evaporation ~74% of the low Es in dry season; critical protection from soil drying.
Results 2 - Long-term ET partitioning in a semi-arid forest

Validating the use of long-term flux records of ET partitioning

\[ET = m \text{GPP} + E \]

where E is the non-stomatal evaporation = Es+Ei

(Scott and Biederman, 2017)

- E estimate of 6.8-9.0 mm month\(^{-1}\) (82-108 mm y\(^{-1}\)), is similar to our direct Es estimate of 104 mm
- Using the long-term mean P value (287 mm) indicate mean E/P ratios of 0.28-0.38
Conclusions and take-home message

- In water-limited environments, ET/P = 0.94-1.07 of P, indicating full use of P.
- Mean Et/ET values are similar to global mean values (0.64 ± 0.13), attained at much higher aridity index (PET/P; 5.5).
- Es/P comprises a significant part of the water budget ~26%, Ea/P of ~5% can provide critical protection from soil drying.
- These results emphasize the competition between stomatal and non-stomatal water loss, and the importance of soil evaporation in low-density semi-arid forests, and reflect adjustments that indicate the potential for forestation in current and future dry regions.

Thank you!