Automatic monitoring of crustal seismic activity in Galati region of southeastern Romania using full waveform-based approach

Dragos Tataru1, Natalia Poiata1,2 and Bogdan Grecu1

1 National Institute for Earth Physics, Romania
2 Institut de Physique du Globe de Paris, France

Map showing seismic activity in Galati region, with permanent and temporary stations marked. The maps are labeled for the years 2013 and 2017-present. The imaging function with color bar and time axis is also included.
2013 Galati seismic swarm and seismic network in the area

Galati area of SE Romania - low & complex crustal seismicity; poorly monitored

2013 seismic swarm - exceptional seismic activation of the region
Swarm characteristics: ~ 3 month long; > 800 events; Ml 0.1-4.0 (>15 events, Ml > 3.0)
Impact: felt by local population; proximity of oil exploitation wells - mass-media attention
Installation of local seismic monitoring network (including borehole stations) - Nov. 2017
Methodology and workflow outline

1. Extracting and locating seismic events from continuous data flow

- Signal processing
- Cross-Correlation (TDE functions)
- Mapping according to TDOA (pairwise SLF)

2. Building event database

- Event classification
 - Similarity analysis (multiplets and repeaters)
- Event relocation
 - P & S relocation
 - Double difference relocation

Data and target area

Target area:
- Region activated during 2013 seismic swarm

Data:
- Continuous 3-C seismic recordings; closest 5 station; local 1-D velocity model
- Time-period 2017-2019 including small region re-activation

Main goal:
- Continuous data flow rapid and fully automated analysis
- Detection/location and characterisation of local low-magnitude events
- Potential of identifying seismic activation
- Pseudo real-time setup (one-day delay data processing)
• Current stage and results; comparison with ROMPLUS catalog

Preliminary catalog of automatically located events for Galati region

Analysed time-period: November 2017 - December 2019 - workflow & parameter setup

- BackTrackBB-based continuous data processing: ~400 events
- > 350 true detection
- Allows detecting smaller-magnitude event
- More details about activity evolution in time

• ROMPLUS revised catalog: ~ 120 events
• Mostly larger events with good SNR
• Current stage and results; comparison with ROMPLUS catalog

Event characterisation - identifying similar events with cross-correlation analysis

Location of identified families

Selected family waveforms: 2.0 -15.0 Hz filtered

- 5-station, 3-component CC analysis for identifying families of similar events (CC>0.8)
- ~ 8 families: 2-20 events per family
- Sequential activation of families during period of more intense activity
- Small swarm-like activity in Jan 2018 - March 2018
- Pattern similar to 2013 swarm
- Automatic catalog - more details about intense activity period
Challenges

- Mislocated and misidentified regional events - due to small-scale of network -> careful event-selection scheme (spectral analysis?)
- Increased number of false detections if number of functioning stations is decreased (only 5-stations) -> additional false-event removal procedure (SNR-based)

Example of mislocated regional event

Ongoing and future developments

- Current-stage - off line data processing :P-wave detection/location and event similarity
- Ongoing development - P&S-wave based event relocation, removal of regional events
- Future development - pseudo real-time setup of analysis workflow: analysing with one-day delay continuous daily data (achievable on a local multi-core PC)
- Investigating source properties of local events - improvement of parameter setup and evaluation of seismic (re-)activation identification