Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
00			00000	Ŭ
	Comparing the long t	orm fato of a ch	ow covo and a rigi	
				и
	container bur	ried at Dome C,	Antarctica	

Julien Brondex $^{1,\ast},~$ Olivier Gagliardini $^1,~$ Fabien Gillet-Chaulet $^1,~$ Mondher Chekki 1

 $^1 {\rm Univ.}\,$ Grenoble Alpes, CNRS, IRD, IGE, F-38000 Grenoble, France

* Now at: Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland

Wednesday, 6 May 2020

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
0				
Welcome				
Hi				

I am currently doing a PostDoc at the University of Lausanne...

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
\odot				
Welcome				
Hi				

I am currently doing a PostDoc at the University of Lausanne...

... but today I would like to present a study I did during my previous PostDoc at the IGE, Grenoble, France

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
0				
Welcome				
Hi				

I am currently doing a PostDoc at the University of Lausanne...

... but today I would like to present a study I did during my previous PostDoc at the IGE, Grenoble, France

This work is part of the international project **ICE** (BMORY, which aims to create a global ice archive sanctuary in Antarctica gathering ice cores collected all over the world on glaciers that will likely have melted away in the coming decades due to climate change.

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
0				
Welcome				
Hi				

I am currently doing a PostDoc at the University of Lausanne...

... but today I would like to present a study I did during my previous PostDoc at the IGE, Grenoble, France

This work is part of the international project **ICE** (PMORY, which aims to create a global ice archive sanctuary in Antarctica gathering ice cores collected all over the world on glaciers that will likely have melted away in the coming decades due to climate change.

Please, follow me ...

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
$\circ \bullet$				
Context				
Ice Memory				

Here are two people drilling an ice core at Col du Dôme (France) for the project.

	00	000	00000	O
Context				
Ice Memory				
		_		

Here are two people drilling an ice core at Col du Dôme (France) for the project.

Other cores have already been drilled at Illimani (Andes, 2017), Belukha (Altaï,2018), Elbrus (Caucasus, 2018)

All the cores will then be transported to Antarctica for long-term storage (>100a) within the firn at Dome C

O● Context	00	000	00000	0
Ice Memory				
		Here	are two people drilling ar du Dôme (France) for th	n ice core at e project.

Introductio

Other cores have already been drilled at Illimani (Andes, 2017), Belukha (Altaï,2018), Elbrus (Caucasus, 2018)

All the cores will then be transported to Antarctica for long-term storage (>100a) within the firn at Dome C

But this implies a need for a perennial subsurface storage solution !

.

○●	00	000	00000	o
Context				
Ice Memory				
		Uther cores Illimani (Ande Elbi All the corr Antarctica f wit	e are two people drilling a ol du Dôme (France) for th s have already been drilled s, 2017), Belukha (Altaï,20 rus (Caucasus, 2018) es will then be transported for long-term storage (>10 hin the firn at Dome C	n ice core at ne project.

Here, we are using the ice/firn flow model to investigate possible storage solutions that would meet the specific requirements of the project.

○●	00	000	00000	O
Context				
Ice Memo	ory			
		(He Other core Illimani (And Elt All the cor Antarctica wi	re are two people drilling a col du Dôme (France) for ti es have already been drillec es, 2017), Belukha (Altaï,2 rus (Caucasus, 2018) res will then be transporter for long-term storage (>10 thin the firn at Dome C	n ice core at he project. I at 018), d to 00a)
(Horo w	e are using the ice/firn flow mo	del 💴 🛄 to investig	te possible storage	

solutions that would meet the specific requirements of the project.

We are going two consider two end-member cases in terms of rigidity of the facility: an **ice cave** dug into the firn and a **perfectly rigid container** buried within it.

○●	00	000	00000	O
Context				
Ice Memo	ory			
		(Her C Uther core Illimani (Ande Elb All the cor Antarctica wi	e are two people drilling a ol du Dôme (France) for t s have already been drilled es, 2017), Belukha (Altaï,2 rus (Caucasus, 2018) es will then be transporte for long-term storage (>1) thin the firn at Dome C	in ice core at he project. d at 018), d to 00a)
Here, we	e are using the ice/firn flow mo	del 🌄 to investiga	te possible storage	

solutions that would meet the specific requirements of the project.

We are going two consider two end-member cases in terms of rigidity of the facility: an **ice cave** dug into the firn and a **perfectly rigid container** buried within it.

But first we need to construct a model initial state...

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion	
	•0				
Model Description					
Production of an initial steady state					

-250

 $v = -2.9 \text{ cm a}^{-1}$

EGU Online Meeting

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion			
		000					
Construction							
A polar snow cave in practise: a construction recipe							

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion			
		000					
Construction							
A polar snow cave in practise: a construction recipe							

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion			
		000					
Construction							
A polar snow cave in practise: a construction recipe							

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion	
		000			
Construction					
A polar snow cave in practise: a construction recipe					

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion		
		000				
Construction						
A polar snow cave in practise: a construction recipe						

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
		000		
Construction				
A polar sn	ow cave in practise	e: a constructi	on recipe	

Photo Credit: J.P. Steffensen, NEEM 2012 report

-250

= - 2.9 cm a⁻¹

w

EGU Online Meeting

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion		
			00000			
Concept						
Shipping containers in Antarctica						

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion		
			00000			
Concept						
Shipping containers in Antarctica						

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion		
			00000			
Concept						
Shipping containers in Antarctica						

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion	
			00000		
Concept					
Shipping containers in Antarctica					

-250

 $v = -2.9 \text{ cm a}^{-1}$

.

Normal stresses are **independent** of the consideration **of weight** (not shown) and are slightly **higher for the large trench case** due to higher initial densities

.

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
				•
Conclusion				
Conclusion				

Thank you for your attention !

Here are a few messages to take home ...

Introduction	Initial steady state	Snow Cave	Rigid container	Conclusion
				•
Conclusion				
Conclusion	l i i i i i i i i i i i i i i i i i i i			

Thank you for your attention !

Here are a few messages to take home ...

A snow cave excavated at Dome C could be perennial over decades provided that a sufficiently large trench of high density is constructed around it !

After 100a, a **rigid container** would have to support normal stresses of the order of **100 kPa in the center of roof and floor** and **above 400 kPa at angles**

Normal stresses on the containers sides after 100a are about 40 kPa

These normal stresses differ from purely hydrostatical loads

A **usual shipping container is not able to bear these loads.** A reinforcement structure or another ad hoc storage solution has to be designed !

This work is the topic of a paper submitted to the journal Cold Regions Science and Technology and currently under review...