From Corinth gulf extension to Ionian subduction/collision (W. Greece): micro-seismicity survey to constrain local tectonics

V. Lefils 1, A. Rigo 1, E. Sokos 2

1 Laboratoire de Géologie de l’Ecole Normale Supérieure, PSL Research University, CNRS UMR 8538, 24 rue Lhomond 75005 Paris, France.
2 Department of Geology, Seismological Laboratory, University of Patras, Greece.

Introduction

The Western region of the Gulf of Corinth is characterized by the Island Akarnanian Block (IAB) microplate, which has been progressively separating itself since the Pleistocene (less than ~1.5 My) [1]. This plate is bounded to the North-East by the Katouna-Sienna Fault (KSF), a North-South left lateral strike-slip fault system, to the North by normal faults reaching the limit between Apulian and Eurasian plates, and to the East by normal faults forming the East-West graben of Tri- chonis lake (fig. 1).

Even though these faults are known, there are no reliable data in fault location according to the different authors [1,2]. In terms of instrumental and seismicity, the area remains poorly studied, the seismicity recorded by the Greek national network (Hellenic Unified Seismological Network, HUSN) shows discrepancies regarding to the faults mapped at surface.

With the help of a temporary seismological network (MADAM experiment) we are implementing a large seismic catalog to constrain seismic slip zones and movements, and have a better understanding of tectonics and geodynamics of this region.

Preliminary results (October 2015 - December 2016)

With the MADAM network we have well located 5363 seismic events compared to the NOA (National Observatory of Athens) catalog during the same time period and for the same area. It corresponds to an increase of 230% of event locations.

The events in the NOA catalog are located mostly deeper than those from the MADAM catalog, indicating that the NOA catalog is poorly constrained in depth, most probably due to the wave velocity model used, while we use the local model from Hasslinger et al. (1999) [4].

We identify 8 swarms, 4 of which were already in the NOA catalog, the other 4 being revealed thanks to the MADAM network (black dashed ellipses fig. 6). The seismogenic dynamics in this area seems to be controlled by swarm activity. In particular, one can note the important seismic activity at the passage from the Gulf of Corinth to the Gulf of Patras, indicating a high deformation area [5].

Some of those swarms, themselves sometimes constituted by small clusters, are active during short time periods (from a few days to several weeks). North to the Amvrakikos gulf the swarm is active from July 2016 to September 2016, and at the Mesolonghi bay (South to SS24 station) from May 2016 to June 2016.

During this observation period, a few seismic activity is associated with the major KSF active structure.

Seismic data

Microseismic data are processed with the frequency band picker method [3] which compares the short-term average (STA) to the long-term average (LTA) in term of frequency. For accessibility issues, a basic seismic picking and checking homemade python program is used for this study.

Conclusion and Perspectives

Preliminary results indicate the need to have a denser seismic network to study the local microseismicity with a 230% increase in the detections. These new data reveal that the local seismic dynamics is potentially controlled by swarm activities.

Next step is to complete the microseismic catalog with the 2017 dataset. This final catalog will allow to better constrain the seismic velocity model with an appropriate Poisson’s ratio.

Once the catalog completed, magnitudes could be constrained and focal mechanisms determined. Then, the tectonic interpretation could begin in order to constrain the geodynamics of the area and the seismic potential of the faults. Finally the goal is to constrain a seismo-tectonic model consistent with the local and regional geodynamics, GPS and InSAR observations.

Acknowledgements: This research work is funded by the Laboratoire de Géologie de l’Ecole Normale Supérieure, Paris PSL Research University with the support of CNRS/INSU Tel-Talus 2016 and 2017. We want to thanks Paris Paraskevopoulos, Nikos Germonis and Dimitri Giannopoulous for their help in the field.

References