When 1D Response Analysis Fails: Application of Earthquake HVSR in Site-Specific Amplification Estimation

Chuanbin Zhu¹, Marco Pilz¹, and Fabrice Cotton¹, ²

(1. GFZ German Research Centre for Geosciences, Potsdam; 2. University of Potsdam, Institute for Earth Sciences, Potsdam)
Empirical Correction to HVSR

\[HVSR(f) = \frac{H(f)}{V(f)} \quad SBSR(f) = \frac{H(f)}{H_b(f)} \]

\[HVSR_b(f) = \frac{H_b(f)}{V_b(f)} \quad SBSR_v(f) = \frac{V(f)}{V_b(f)} \]

\[HVSR(f) = \frac{H(f)}{H_b(f)} \cdot \frac{H_b(f)}{V_b(f)} \cdot \frac{V_b(f)}{V(f)} = \frac{HVSR_b(f)}{SBSR_v(f)} \cdot SBSR(f) \]

\[H_b(f) = V_b(f) \text{ or } HVSR_b = 1.0 \]

\[SBSR(f) = HVSR(f) \cdot SBSR_v(f) \]

\[pSBSR(f) = HVSR(f) \cdot <SBSR_v(f)> \]
Data Selection

Fig. (a) Spatial distribution of earthquakes and 207 KiK-net stations used in this study, and (b) Mw-Rrup distribution of the 1840 selected earthquake recordings.
Fig. (a) k-means clustering of the 90 KiK-net sites, and (b) average SBSRv for each cluster, i.e., $\langle SBSRv \rangle$.
Correction Spectra

Fig. Evaluation of techniques used in site effects quantification.
pSBSR vs. TTF

Fig. HVSR, TTFStrata and pSBSR at sites (a) TCGH07 and (b) IWTH04.
Goodness-of-fit (GoF) metrics

<table>
<thead>
<tr>
<th>Goodness-of-fit metric</th>
<th>Expression</th>
<th>Range</th>
<th>Measure</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson's r</td>
<td>$\frac{\sum_{i=1}^{n}(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - \bar{x})^2 \sum_{i=1}^{n}(y_i - \bar{y})^2}}$</td>
<td>[-1, 1]</td>
<td>Linear relationship</td>
<td>Measure the closeness in shape (alignment of peaks and troughs)</td>
</tr>
<tr>
<td>Spearman's ρ</td>
<td>$\frac{\text{cov}(rg_x, rg_y)}{\sigma_{rg_x} \sigma_{rg_y}}$</td>
<td>[-1, 1]</td>
<td>Ordinal relationship</td>
<td></td>
</tr>
<tr>
<td>Kendall’s τ</td>
<td>$\frac{2[\sum_{i<j} \text{sgn}(x_i - x_j) \text{sgn}(y_i - y_j)]}{n(n-1)}$</td>
<td>[-1, 1]</td>
<td>Ordinal relationship</td>
<td></td>
</tr>
<tr>
<td>Index of Agreement d</td>
<td>$1 - \frac{\sum_{i=1}^{n}(x_i - y_i)^2}{\sum_{i=1}^{n}(</td>
<td>y_i - \bar{y}</td>
<td>+</td>
<td>x_i - \bar{x}</td>
</tr>
<tr>
<td>Mean Absolute Error MAE</td>
<td>$\frac{\sum_{i=1}^{n}</td>
<td>y_i - x_i</td>
<td>}{n}$</td>
<td>-</td>
</tr>
</tbody>
</table>
pSBSR vs. TTF

(a) $r > 0.6$
- pSBSR: 81%
- TTF Strata: 27%

(b) $\rho > 0.6$
- pSBSR: 76%
- TTF Strata: 29%

(c) $\tau > 0.6$
- pSBSR: 48%
- TTF Strata: 7%

(d) $d > 0.6$
- pSBSR: 80%
- TTF Strata: 37%

(e) $\mu \pm \sigma$
- pSBSR: 0.20±0.09
- TTF Strata: 0.23±0.08

Fig. Histograms of correlation coefficients (a) Pearson’s r, (b) Spearman’s ρ, (c) Kendall’s τ, (d) Index of Agreement d, and (e) Mean Absolute Error MAE (log10) between pSBSR and ETF (blue) in the frequency range from f_0 to 25 Hz for the 90 KiK-net sites. Hisograms for TTF Strata (red) are superimposed.
pSBSR vs. TTF

Table. Success rates of TTFStrata and pSBSR in reproducing SBSR under different definitions of “good match”

<table>
<thead>
<tr>
<th>Estimation</th>
<th>$r>0.60$</th>
<th>$r>0.60$ $d>0.60$</th>
<th>$r>0.65$ $d>0.65$</th>
<th>$r>0.60$ MAE<0.25</th>
<th>$r>0.65$ MAE<0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTF</td>
<td>27%</td>
<td>27%</td>
<td>18%</td>
<td>22%</td>
<td>14%</td>
</tr>
<tr>
<td>pSBSR</td>
<td>81%</td>
<td>76%</td>
<td>68%</td>
<td>62%</td>
<td>50%</td>
</tr>
</tbody>
</table>
Summary

The empirical correction to HVSR is highly effective and achieves a “good match” in both spectral shape and amplitude at the majority of the 90 KiK-net sites, as opposed to less than one-third for the 1DSH modelling. In addition, the empirical correction does not require a ground model as GRA and thus has great potentials in seismic hazard assessments.
Thank you very much!