The Triassic–Jurassic sandstone reservoirs in the Danish subsurface at ca. 1–3 km depth contain an enormous geothermal resource that has so far been utilized in only three geothermal plants due to a number of geological, technical and commercial barriers. These barriers have been addressed in the GEOTHERM project (Geothermal energy from sedimentary reservoirs - Removing obstacles for large scale utilization) and recommendations for overcoming the obstacles have been made.

Quantitative seismic interpretation
Quantitative seismic interpretation proved capable of giving a reliable reservoir characterization with regards to estimation of porosity and sand/clay distribution.

Fluid versus gas permeability
Relationships between fluid and gas permeability have been established such that the regularly measured gas permeability can be recalculated to fluid permeability giving a better representation of the reservoir.

Formation water chemistry
The composition of the formation water in the three Danish geothermal plants has been measured and used for geochemical modelling to evaluate the risk of scaling, where especially barite showed a tendency to precipitate upon cooling of the brines.

Corrosion and scaling
The causes of injection problems have been investigated including corrosion and scaling processes, showing that careful choice of well-lining, tubing materials and surface finish besides cautious operation of plants are of utmost importance to prevent operational problems.

Resource estimation
The regional geothermal resource estimation has been updated based on a new comprehensive 3D temperature model of four reservoirs in the subsurface, confirming the presence of a huge geothermal resource with wide geographical extent covering most of the country.

Business case
A geothermal business case has been developed to give a lifetime assessment of geothermal plants including feasibility, design, drilling, construction, production and abandonment, showing that the operational costs are closely linked to the existing infrastructure and to the choices made when designing the geothermal plant.

Acknowledgements
The authors are very thankful to the project partners for the fruitful cooperation and to Innovation Fund Denmark for funding (project 6154-00011B).