1. INTRODUCTION

Gullies on Mars were first reported in 2000 [1] and were hailed as evidence of recent liquid water flows on Mars. Since that time monitoring of gullies has revealed that they are active today at times of year when the martian surface is at its coldest and when CO$_2$ is condensed on the surface [2,3]. To the first order the distribution of CO$_2$ frost [4,5] and the geographic locations of gullies [6] match - between latitudes of 30$^\circ$ and 45$^\circ$ on pole-facing steep slopes and from 45$^\circ$ to the poles on slopes with any orientation. Detailed observations of gullies on martian sand dunes hinted at a complex interplay between frost and non-frosted surfaces [7] and recent gully-deposits have been emplaced atop frosty gullies fans [3]. In order to explore the relationship between surface frosts and gully-activity further we focus on Sisyphi Cavi near the south pole of Mars, where gully-activity has been studied [8] and CaSSIS obtained a dense temporal coverage in 2018.

3. INITIAL RESULTS

In winter frost covers all surfaces and dark spots and fans are observed on the gully deposits and preferentially around the gully channels (Figure 2a). The dark spots seem to concentrate on sandy surfaces; such as the dunes at the bottom of Figure 2a, consistent with previous observations. These dark spots and fans are interpreted to be the surface expression of gas-jets generated by the sublimation of CO$_2$ underneath a continuous slab of CO$_2$ ice on the surface [11]. The jets occur when the pressure fractures the slab ice. The top of the slopes are the first to defrost, as the average surface temperature increases towards 200K (Figure 2b), followed by sun facing parts of the alcoves and channels (Figure 2c). Notice in both Figures 2b and 2c that the base of the alcoves remains frost-covered. As the surface temperature approaches and exceeds 250K and the surrounding terrain is completely defrosted, the last parts of the gully to remain frost covered are the fans (Figure 2d). We interpret this to be a result of the fans having slightly lower thermal inertia than the surrounding materials. This lower thermal inertia could be because the fans have a lower content of ground ice (i.e. a thicker lag on top of the ice-table), or because of more recent depositional events. It is at this time of year when gullies are active [8]. Hence we infer that for gully activity to occur there needs to be both frosted and defrosted surfaces available to drive vigorous sublimation of the CO$_2$ ice [3,7]. Finally, once defrosting has almost fully completed and surface temperatures have reached their seasonal maximum of ~270K the only remaining surface frosts are in pole-facing niches at the base of gully-alcoves (Figure 2e).

5. CONCLUSIONS

- Ices and patterns of defrosting are easy to monitor with CaSSIS.
- Gully-alcoves defrost before the fans and gullies defrost later than surrounding terrain – suggests activity is driven by the availability of "hot" sediment to trigger more efficient sublimation.
- Further work will examine whether frost patterns differ where activity occurs.

Acknowledgements: SJC is grateful for the financial support of CNES in support of her CaSSIS work. The authors thank the spacecraft and instrument engineering teams for the successful completion and operation of CaSSIS. CaSSIS is a project of the University of Bern funded through the Swiss Space Office via ESA’s PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI)/ASI-INAF agreement n° (1612/12/R), INAF Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (LPL) and NASA are also gratefully acknowledged.

References: