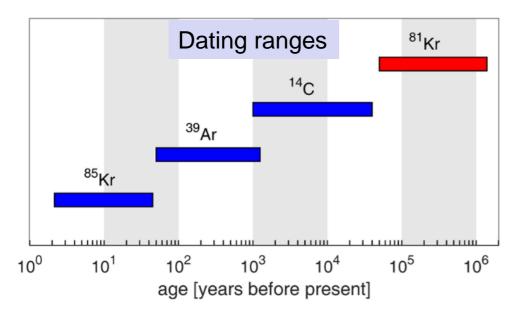


Constraining ice core chronologies with ³⁹Ar and ⁸¹Kr

climate.nasa.gov

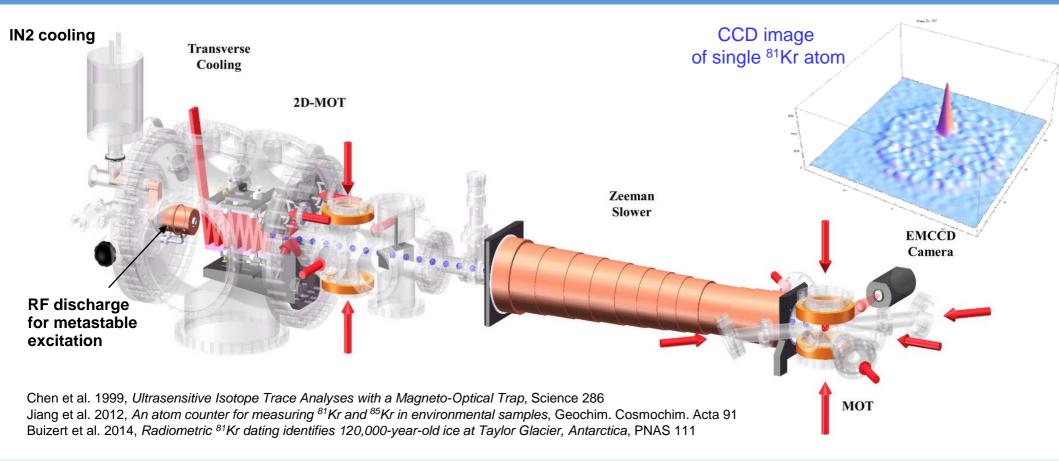
Florian Ritterbusch¹, Yan-qing Chu¹, Ilaria Crotti², Xi-Ze Dong¹, Ji-Qiang Gu¹, Shui-Ming Hu¹, Wei Jiang¹, Amaelle Landais³, Lili Shao⁴, Volodya Lipenkov⁵, Zheng-Tian Lu¹, Barbara Stenni², Taldice team⁶, Lide Tian⁴, A-Min Tong¹, Wen-Hao Wang¹, Guo-min Yang¹, and Lei Zhao¹


- (1) University of Science and Technology of China, Hefei, China
- (2) Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Venice, Italy
- (3) IPSL/LSCE, CNRS/CEA/UVSQ/Université Paris Saclay, Gif sur Yvette, France
- (4) Institute of International Rivers and Eco-security, Yunnan University
- (5) Arctic and Antarctic Research Institute St Petersburg, Russia
- (6) www.taldice.org

Dating with 81Kr

⁸¹Kr is nearly ideal for dating because

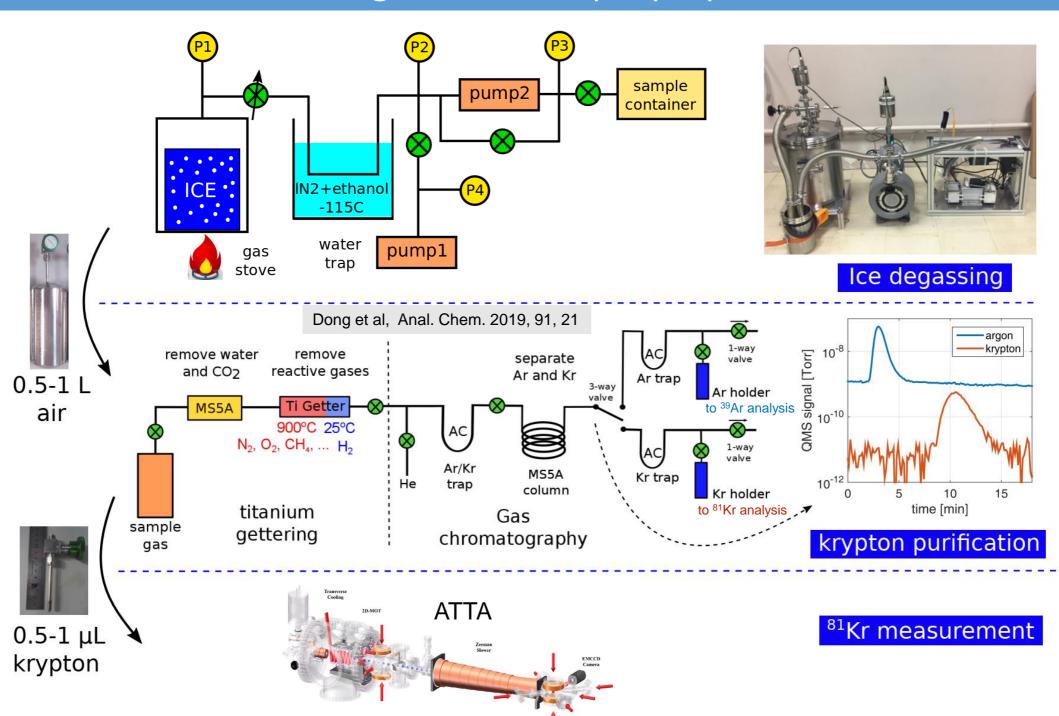
- gas: uniform, stable distribution in the atmosphere
- noble: not altered by chemical processes, simple transport mechanisms
- Cosmogenic origin: 81Kr age correction < 4% over past 1.4 Ma
- Absolute: 81Kr provides absolute, radiometric age
- contamination monitor: modern air entering during sampling or sample processing can be identified with the anthropogenic ⁸⁵Kr



isotope	halflife	abundance	# of atoms in kg water/ice
⁸¹ Kr	230 ka	9e-13	1 000
¹⁴ C	5730 a	1.5e-12	10 000 000
³⁹ Ar	269 a	8e-16	8 000
⁸⁵ Kr	11 a	2e-11	30 000

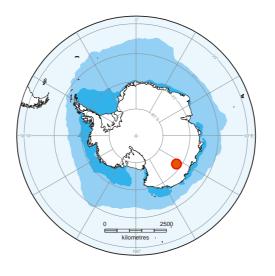
⁸¹Kr could not be measured in the past due to its extremely small abundance

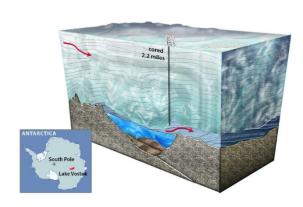
Atom Trap Trace Analysis (ATTA)

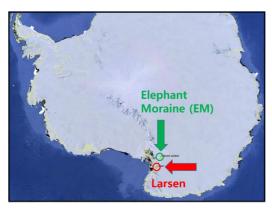


- the novel laser based detection method Atom Trap Trace Analysis (ATTA) has enabled 81Kr dating
- ATTA has nearly perfect isotope selectivity
- ⁸¹Kr is measured relative to ⁸³Kr: $c_{81} = \frac{\binom{81}{Kr/83}Kr}{\binom{81}{Kr/83}Kr}_{ref}$
- 81Kr dating of glacier ice has been demonstrated [Buizert et al, 2014] but large samples (>100kg ice) were necessary at that time
- with our current ATTA system we lowered the sample size down to 0.5-1 µL of krypton, which can be extracted from 5-10 kg of Antarctic ice

⁸¹Kr dating of ice – sample preparation


Ice studies with 81Kr


Grove Mountains


Epica Dome C

VOSTOK station

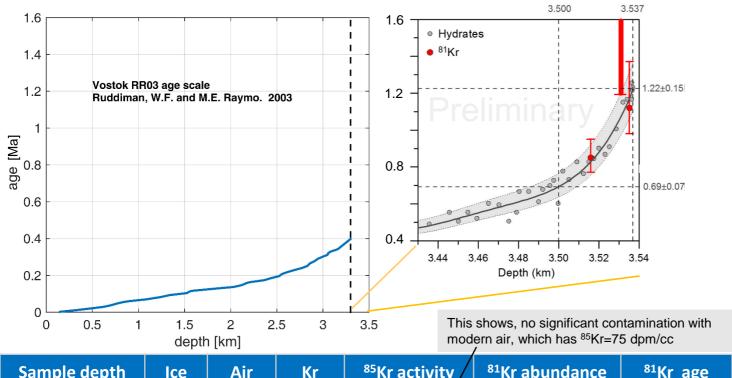
Larsen and Elephant Moraine

Guliya Ice cap, Tibetan Plateau

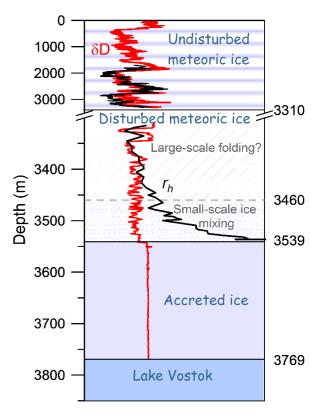
Tian et al, 2019, GRL, 46, 6636-6643

Talos Dome Ice Core

⁸¹Kr dating of Vostok ice core

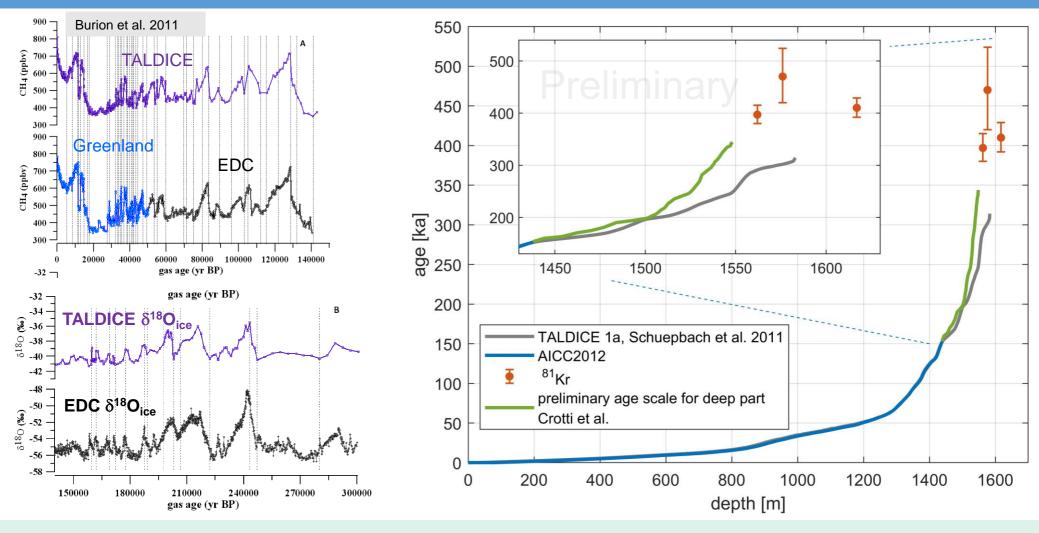

CC BY

- chronology for the disturbed meteoric bottom of the Vostok ice core is difficult
- timescale developed based on linear relation between age and hydrate size
- Use 81Kr as independent check for the hydrate-based timescale
- 1.2 million year old ice revealed at very bottom


The Mid-Pleistocene Transition and the Vostok Oldest Ice Challenge © 2015 r. V.Ya. Lipenkov¹, D. Raynaud²

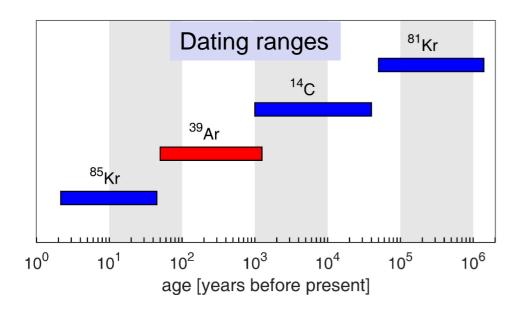
¹Arctic and Antarctic Research Institute, St Petersburg; ²Laboratoire de Glaciologie et Géophysique de l'Environnement, Grenoble, France

Лёд и Снег · 2015 · Т. 55 · № 4



Sample depth m	Ice kg	Air mL	Kr µL	⁸⁵ Kr activity dpm/cc	⁸¹ Kr abundance pmKr	⁸¹ Kr age ka
3510.5 – 3511.5 3520.0 – 3521.5	6.9	590	0.6	< 0.5	7.8 ^{+1.8} _{-1.8}	850 ⁺¹⁰⁰ ₋₈₀
3529.0 – 3532.5	7	600	0.6	< 1.1	< 2.5	> 1200
3533.5 – 3537.0	6.9	590	0.6	< 1.7	3.3 ^{+1.6} _{-1.8}	1120 ⁺²⁵⁰ ₋₁₄₀

⁸¹Kr dating of Talos Dome Ice core



- Initial chronology until 314 ka (1583 m depth) based on stratigraphic matching with Greenland/EDC ice cores (Burion et al. 2011, Schuepbach et al.2011)
- The official chronology AICC2012 was later defined only until 153 ka (1438 m depth) due to disturbed stratigraphy at the bottom (Bazin et al., 2013)
- Check with ⁸¹Kr, 3 samples of 5-10 kg → ⁸¹Kr results do not support initial chronology for the bottom
 - Use 81 Kr and further δ^{18} O_{ice} and δ^{18} O_{atm} measurements as constraints to develop a new timescale for the deep part of the core (see presentation Ilaria Crotti et al.)

Dating of ice with ³⁹Ar

isotope	halflife	abundance	# atoms in kg water/ice
⁸¹ Kr	230 ka	9e-13	1 000
¹⁴ C	5730 a	1.5e-12	10 000 000
³⁹ Ar	269 a	8e-16	8 000
⁸⁵ Kr	11 a	2e-11	30 000

- dating range of ³⁹Ar (50-1500 a) well suited for alpine ice cores
- In the past, ³⁹Ar could only be measured by Low-Level Counting on large samples (>250kg)
 - → ³⁹Ar dating was only feasible for groundwater
- ATTA for ³⁹Ar harder than for ⁸¹Kr because relative abundance 1000 times lower
 - → low atom count rate for ³⁹Ar is the main challenge.

ATTA for ³⁹Ar

PRL **106**, 103001 (2011)

PHYSICAL REVIEW LETTERS

week ending 11 MARCH 2011

 39 Ar Detection at the 10^{-16} Isotopic Abundance Level with Atom Trap Trace Analysis

W. Jiang, W. Williams, K. Bailey, A.M. Davis, S.-M. Hu, Z.-T. Lu, T.P. O'Connor, R. Purtschert,

N. C. Sturchio, Y. R. Sun, and P. Mueller Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

³⁹Ar count rate

~ 0.2 atoms/ hour

Groundwater dating with Atom Trap Trace Analysis of ³⁹Ar

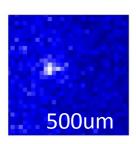
F. Ritterbusch¹, S. Ebser¹, J. Welte¹, T. Reichel², A. Kersting², R. Purtschert³, W. Aeschbach-Hertig², and M. K. Oberthaler¹

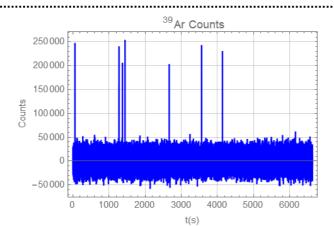
39Ar count rate4 atoms/ hour

¹Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany, ²Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany, ³Climate and Environmental Physics, University of Bern, Bern, Switzerland

³⁹Ar dating with small samples provides new key constraints on ocean ventilation

Sven Ebser ¹, Arne Kersting², Tim Stöven ³, Zhongyi Feng ¹, Lisa Ringena¹, Maximilian Schmidt ^{1,2}, Toste Tanhua ³, Werner Aeschbach ^{2,4} & Markus K. Oberthaler ¹

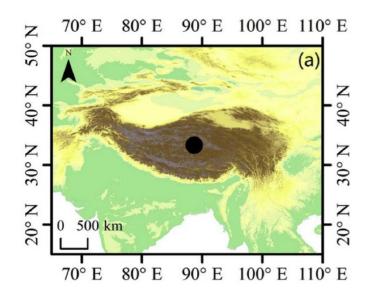

Dating glacier ice of the last millennium by quantum technology

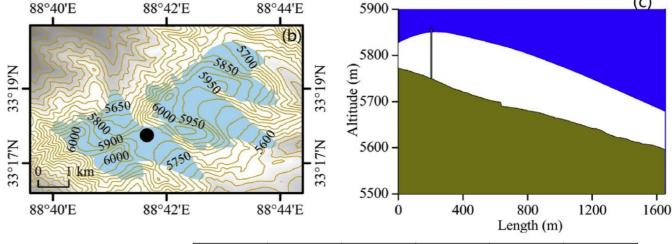

Zhongyi Feng^{a,1}, Pascal Bohleber^{b,c}, Sven Ebser^a, Lisa Ringena^a, Maximilian Schmidt^{a,b}, Arne Kersting^b, Philip Hopkins^b, Helene Hoffmann^{b,d}, Andrea Fischer^c, Werner Aeschbach^{b,e}, and Markus K. Oberthaler^a

^aKirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany; bInstitute of Environmental Physics, Heidelberg University, 69120

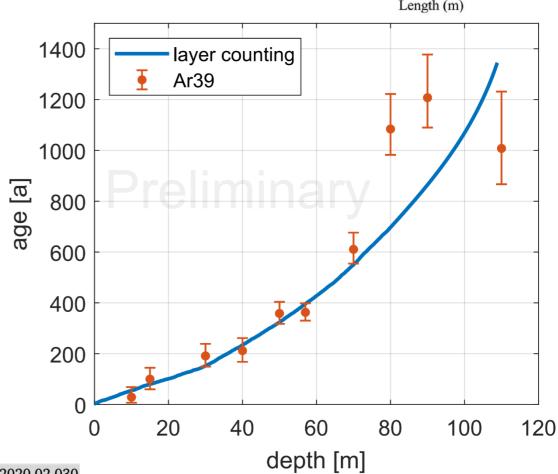
³⁹Ar count rate 5-7 atoms/ hour

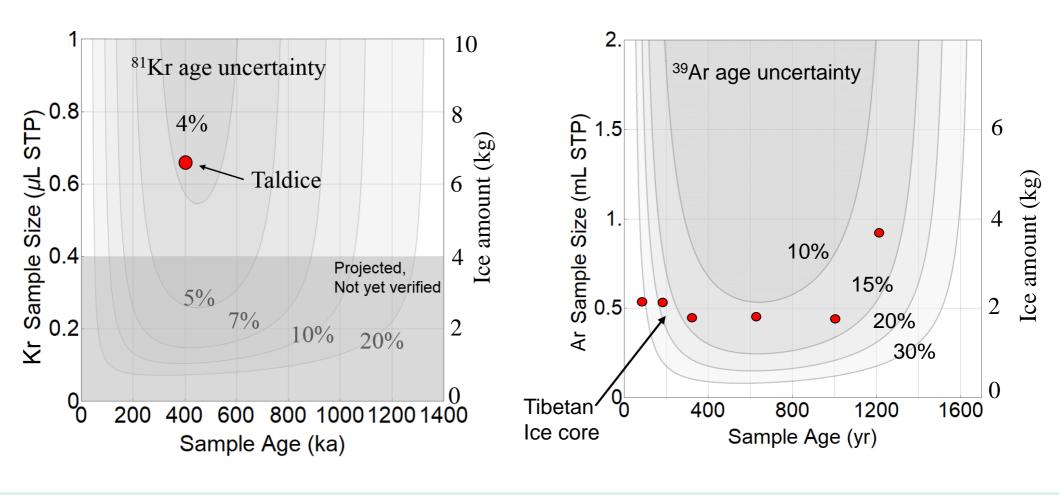
³⁹Ar atom


USTC


ATTA Setup completed recently

³⁹Ar count rate ~ 10 atoms/ hour


³⁹Ar dating of ice core from central Tibet



- Chronology based on absolute dating
- (³H, β-activity, ¹³⁷Cs) and annual layer counting (δ¹⁸O, visual, dust)
- Independently check chronology with ³⁹Ar samples of 3-5 kg (air content only ~10 mL/kg)
- measurements in progress to further constrain the bottom part

Summary

- 81Kr dating of 5-10 kg samples from Antarctic ice cores with ATTA
- 81Kr data can be used to constrain continuous timescales, especially where the stratigraphy is disturbed
- an ATTA system for ³⁹Ar analysis on 1-5 kg ice samples has recently been completed at USTC
- an ³⁹Ar profile for an ice core from central Tibet has been obtained to constrain a timescale constructed by layer counting