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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m The Svalbard Archipelago is made of three terranes accreted together during the
Caledonian Orogeny showing dominantly N-S-trending fabrics, folds and faults.
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m Core complexes exhumed in the late Silurian—Devonian due to normal top-north,
top-west and top-east movements along bowed shear zones.

Braathen et al. (2018)
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m Core complexes exhumed in the late Silurian—Devonian due to normal top-north,
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m Core complexes exhumed in the late Silurian—Devonian due to normal top-north,
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m In Svalbard, Pennsylvanian rifting led to the formation of thick N-S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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m In Svalbard, Pennsylvanian rifting led to the formation of thick N-S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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m In Svalbard, Pennsylvanian rifting led to the formation of thick N-S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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m In Svalbard, Pennsylvanian rifting led to the formation of thick N-S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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In Svalbard, Pennsylvanian rifting led to the formation of thick N-S-trending sedimentary
basins like the Billefjorden Trough, which parallel dominant Caledonian fabrics.
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m In the Cenozoic, opening of the Labrador Sea and Baffin Bay led to transpression and the
formation of the West Spitsbergen Fold-and-Thrust Belt in western Svalbard.
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m In the Cenozoic, opening of the Labrador Sea and Baffin Bay led to transpression and the
formation of the West Spitsbergen Fold-and-Thrust Belt in western Svalbard.
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m In the Cenozoic, opening of the Labrador Sea and Baffin Bay led to transpression and the
formation of the West Spitsbergen Fold-and-Thrust Belt in western Svalbard.
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m In the Cenozoic, opening of the Labrador Sea and Baffin Bay led to transpression and the
formation of the West Spitsbergen Fold-and-Thrust Belt in western Svalbard.
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m Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and
movement of Svalbard c. 400 km to the south along dextral fault zones.
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m Subsequent Cenozoic extension led to the opening of the North Atlantic Ocean and
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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m A major N-S-trending basement ridge in Isfjorden may represent the southwards
continuation of the Bockfjorden Anticline core complex.
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1 | Inlisfjorden, lens-shaped reflections may represent incisement processes
commonly related to core complex exhumation.
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m The potential continuation of the Bockfjorden Anticline in Isfjorden appears offset
by > 10 km left-laterally, and c. 5 km vertically down to the south.
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m The potential continuation of the Bockfjorden Anticline in Isfjorden appears offset
by > 10 km left-laterally, and c. 5 km vertically down to the south.
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m Gravimetric, aeromagnetic and seismic data in the Barents Sea show the existence of
potentially inverted WNW-ESE- to NW-SE-striking Timamian thrusts.
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Gravimetric, aeromagnetic and seismic data in the Barents Sea show the existence of
potentially inverted WNW-ESE- to NW-SE-striking Timamian thrusts.
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In Storfjorden, a high-angle brittle fault folding the seafloor merges with a suite of
moderate amplitude reflections possibly representing a major WNW-ESE-striking thrust.
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2 | Bathymetry data in Billefjorden show that the N-S-striking Billefjorden Fault Zone is
left-laterally offset by WNW-ESE-striking fault-related escarpments.
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m Bathymetry data in Billefjorden show that the N-S-striking Billefjorden Fault Zone is
left-laterally offset by WNW-ESE-striking fault-related escarpments.
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2 | Bathymetry data in Billefjorden show that the N-S-striking Billefjorden Fault Zone is

left-laterally offset by WNW-ESE-striking fault-related escarpments.
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m Seismic data show that the WNW-ESE-striking faults that offset the Billefjorden Fault Zone
correspond to reactivated Devonian normal faults merging into basement fabrics.
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m Bathymetry data in Kongsfjorden show that WNW-ESE-trending fault-related escarpments
offset a N-S-striking Cenozoic fault by 4.5 km left-laterally.
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2 | On the 29th of March 2016, an earthquake coinciding with the location of the WNW-ESE-
striking Timanian thrust struck near the southwestern coast of Edgegya.
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m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

- S R'
Y
. >

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



m Tilt-derivative aeromagnetic data suggest that N-S-trending Greenvillian, Caledonian and
Devonian basement ridges are crosscut by WNW-ESE-striking faults.

- S R'
Y
. >

1.16
0.95
0.75
0.56
0.37
0.19
0.00
-0.17
-0.33
-0.47
-0.61
-0.73
-0.84
-0.94
-1.03
112
-1.21
-1.31
-1.42

tilt (radian)

Koehl et al. (in prep. a)



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



H Seismic data in Storfjorden show a series of SSW-verging Timanian thrust systems.

Koehl et al. (in prep. c¢)




ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



ian thrust systems.

iman

T

-verging

(7]
(7]
Y
(@)
(7]
2
fu
(]
(7]
o
3
(@)
i -
(7]
c
Q
©
st
(o)

Storfj

in

ic data

Ism

Koehl et al. (in prep. c¢)

Se



m North of Bjgrngya, potential NNE-verging Timanian thrusts were reactivated/overprinted
during Devonian—Carboniferous extension, early Cenozoic deformation and at present day.
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m The Mid-Ocean Ridge is segmented by major transform faults that strike parallel to
Timanian faults and topographic highs of continental origin (e.g., Hovgard Ridge).
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3 | The Hovgard Ridge may represent the western continuation of a Timanian thrust that was
ripped off Svalbard during the breakup of the North Atlantic Ocean.
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m The Vestnesa Ridge may represent relict Timanian basement, which may have controlled
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m The Vestnesa Ridge may represent relict Timanian basement, which may have controlled
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m The Knipovich and Molloy ridges likely formed along oblique Caledonian weakness zones,
while major transforms formed subparallel to Neoproterozoic (Timanian?) thrusts.
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m Earliest Mississippian amphibolite facies metamorphism and down-west kinematics
in western Svalbard may be related to core complex exhumation.
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m Basement ridges northwest/west of Spitsbergen may have exhumed as metamorphic core
complexes and represent the northern continuation of Prins Karls Forland basement rocks.
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m WNW-ESE-striking Timanian and transform faults may, alone, have accommodated the
movement of Svalbard from next to Greenland to its present position, c. 400 km away.
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m Hundreds-of-kilometer dextral displacement along N-S-striking faults (e.g., De Geer Zone)
is not required to explain Svalbard’s (c. 400 km) southward motion in the Cenozoic.
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m Svalbard’s three basement terranes were already accreted in the late Neoproterozoic, thus
suggesting that Arctic tectonic plates have been much more stable than expected.
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Conclusion

Timanian faults reactivated during Caledonian and Eurekan deformation, and Devonian—
Carboniferous and late Cenozoic extension, localizing the formation of faults, basins, oceanic
core complexes, transform faults, and breakup in the NE Atlantic.
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