FTIR-based spectral line data of the ν_3 band of NO$_2$ at 6.3 μm and multi-component impurity analysis of NO$_2$ reference gases within the scope of the EMPIR MetNO2 project

EGU GA 2020 web presentation – Session AS5.11 Atmospheric gases and particles: metrology, quality control and measurement comparability

Gang Li, Mi Eon Kim, Viktor Werwein, Alexandra Lüttenschwager, Javis Nwaboh, Olav Werhahn, Volker Ebert
Overview

1. Experimental setup

2. Result of static measurements

3. Results of dynamic measurements

4. Future work
FTIR method for impurity analysis in NO₂ standards

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully characterise the major impurities in the NO₂ reference gas standards (NOy compounds - especially HNO₃, NO, water vapour).</td>
</tr>
</tbody>
</table>

NO₂ line data measurements

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure NO₂ line data at the wavelength range selected in A3.1.3 to support accurate NO₂ amount of substance fraction measurements and the development of spectroscopic transfer standards.</td>
</tr>
</tbody>
</table>
Experimental setup: Flow measurements

Circulator (Julabo HE, water) for T stabilization at 296K

NO$_2$ reference gases in gas cabinet

FTIR: Bruker IFS 125HR

N$_2$ (from LN2 tank) gas for purging

Inficon P sensors

Gas cell: 0.8 - 8 m glass body

P sensor

MFC (coated)

Needle valve

Gas cell outlet

Siliconert® coated components

NO$_2$ reference gas

To pump (Vacuum out)

To gas cell

NO$_2$ leak detector

4 Inficon P sensors 1, 10, 100, 1000 Torr

Gas cell outlet

Gas cell

To gas cell

N$_2$ purging

Physikalisch-Technische Bundesanstalt - National Metrology Institute of Germany

Braunschweig and Berlin
Dynamic measurement: gas flow chart

- Needle valve
- On/off valve
- Cylinder pressure
- Gas cell pressure

Gas Cell

- Pressure sensor 1000 torr
- Pressure sensor 1000 torr
- Pressure sensor 10 torr
- Pressure sensor 1000 torr

Chemical pump

- Turbo pump
- Vent Out

NO₂ reference gas
- MFC 200 mL/min
- N₂ gas

- Deactivated & Close
- Activated & Open

Gas cell pressure was controlled precisely using a needle valve.

- To achieve fast equilibrium state, gas cell and sampling lines were flushed using NO₂ reference gas at 500 mL/min for more than 5 min before the measurement.

- All gas lines are coated with Silconert® coating.
Static measurements: impurities

Black: FTIR spectrum of 979 µmol/mol NO\textsubscript{2} in air at 807 mbar at 296 K in a 6.4 m absorption path after a day from initial filling.

Colour: Simulation of NO\textsubscript{2} and impurities using the HITRAN database.

Impurities change dramatically with time in static measurements.

Impurities reconstructed to t=0

<table>
<thead>
<tr>
<th>N</th>
<th>Molecule</th>
<th>Amount Fraction (µmol/mol)</th>
<th>Spectral band</th>
<th>CCQM-K74-2018* (µmol/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NO\textsubscript{2}</td>
<td>990(15); certified value from AirLiquide 979(20)</td>
<td>{ v\textsubscript{1}+v\textsubscript{3}, \ v\textsubscript{1}+2v\textsubscript{2} }, 2900 cm-1</td>
<td>10.119(16) MY9743_7</td>
</tr>
<tr>
<td>2</td>
<td>NO</td>
<td>Not found in spectrum</td>
<td>Fundamental, 1880 cm-1</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>N\textsubscript{2}O</td>
<td>0.790(40)</td>
<td>v\textsubscript{3}, 2224 cm-1</td>
<td>0.027(5) MY9743_7</td>
</tr>
<tr>
<td>4</td>
<td>HNO\textsubscript{3}</td>
<td>0.430(80)</td>
<td>v\textsubscript{2}, 1709.5 cm-1</td>
<td>0.108(36) Cyn. 614632 0.588(73) BIPM cyan.</td>
</tr>
<tr>
<td>5</td>
<td>CO\textsubscript{2}</td>
<td>0.160(20)</td>
<td>v\textsubscript{3}, 2349 cm-1</td>
<td>0.110(92) MY9743_7</td>
</tr>
<tr>
<td>6</td>
<td>CO</td>
<td>Not found in spectrum</td>
<td>Fundamental, 2143 cm-1</td>
<td>0.0141(19) MY9743_7</td>
</tr>
<tr>
<td>7</td>
<td>H\textsubscript{2}O</td>
<td>Not found in spectrum</td>
<td>v\textsubscript{3}, 1595 cm-1</td>
<td>0.0105(87) MY9743_7</td>
</tr>
<tr>
<td>8</td>
<td>N\textsubscript{2}O\textsubscript{5}</td>
<td>Not found in spectrum</td>
<td>X-sections from HITRAN 1750 cm-1</td>
<td>-</td>
</tr>
</tbody>
</table>

*Value from multiple cylinders, using GC, FTIR
Static measurements: NO₂ line intensity at 1600 cm⁻¹ band

Intensity decrease dramatically with time in an unpredictable way. Static measurement is not suitable for accurate line intensity determination.
Dynamic measurements: spectra

Measured FTIR spectrum

![FTIR spectrum with highlighted regions](image)

Selected region for line intensity determination

![Selected region](image)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrometer</td>
<td>Bruker IFS125HR</td>
</tr>
<tr>
<td>Resolution</td>
<td>0.005 cm⁻¹</td>
</tr>
<tr>
<td>SNR</td>
<td>>1000</td>
</tr>
<tr>
<td>Source</td>
<td>Globar</td>
</tr>
<tr>
<td>Detector</td>
<td>MCT</td>
</tr>
<tr>
<td>Band pass filter</td>
<td>400 – 1880 cm⁻¹</td>
</tr>
<tr>
<td>Path length</td>
<td>0.85 m, 1.66 m, 4.89 m</td>
</tr>
<tr>
<td>Flow rate</td>
<td>200 sccm</td>
</tr>
<tr>
<td>Integration time</td>
<td>9 hours</td>
</tr>
<tr>
<td>Signal stability</td>
<td>no change within 9h</td>
</tr>
<tr>
<td>Pressure uncertainty</td>
<td>0.3% (k=2)</td>
</tr>
<tr>
<td>Path uncertainty</td>
<td>0.08% to 0.25%</td>
</tr>
<tr>
<td>T inhomogeneity</td>
<td>0.15 K</td>
</tr>
</tbody>
</table>
Doublets with spin-splitting typically around 0.002 cm\(^{-1}\).

NO\(_2\) line intensity in HITRAN is unchanged since HITRAN96, which is based on Ref. 2.

Intensity uncertainty given by HITRAN 2-5%.

Dynamic measurements: NO$_2$ line intensity at 1600 cm$^{-1}$ band

Example Voigt\otimesILS fit using PTB program

Major uncertainty components:
Amount fraction: 1%, P: 0.3%, L: 0.2%, ILS: 0.1%, Area: 0.1%
Note: HITRAN uncertainty 2-5%.
Dynamic measurements: Impurities and dimer

Two gases: Red: 98.76 ppm VSL PRM, Blue: 1007.7ppm Linde CRM

Ongoing work: quantitative results come later

“100” ppm VSL PRM:
No sign of N₂O and CO; H₂O band; HNO₃ band, trace amount of CO₂

• “1000” ppm Linde CRM
Clear N₂O band at 2225 cm⁻¹, No H₂O in sample (but inside spectrometer), clear HNO₃ band at 1710 cm⁻¹ and 1325 cm⁻¹, trace amount of CO₂

4.89 m path length
994 mbar
250 scans
Resolution: 0.2 cm⁻¹
Flow rate: 200 sccm
Future work and acknowledgement

Future work

- To improve accuracy of the NO$_2$ line intensities in the v3 band.
- To quantify impurity in the 1 ppm NPL PRM, using the 40 m siliconert coated ICL multipass cell.
- To repeat measurements to check the stability of cylinder, re-assuring line intensity accuracy.

Acknowledgement

- PTB internal funding devoted to the participation in the EMPIR MetNO2 project
- Technical support from Kai-Oliver Krauss
- Discussions and support MetNO2 project partners
Physikalisch-Technische Bundesanstalt
Braunschweig and Berlin
Bundesallee 100
38116 Braunschweig
Dr. Gang Li
Telefon: +49 531 592-3235
E-Mail: Gang.Li@ptb.de
www.ptb.de

Acknowledgement

PTB is member of the European Metrology Network for Climate and Ocean Observation (https://www.euramet.org/european-metrology-networks/climate-and-ocean-observation/)

The EMPIR initiative is co-funded by the European Union’s Horizon 2020 research and innovation programme and the EMPIR Participating States