The Siberian Traps magma emplacement dynamics links to environmental changes across the Permian-Triassic boundary in Svalbard

Sverre Planke¹,², Alexander G. Polozov³, John A. Millett², Dougal A. Jerram¹,⁴, Dmitrii A. Zastrozhnov², Henrik H. Svensen¹ Lars Eivind Augland¹, Morgan Jones¹, Valentin Zuchuat⁵, Arve Sleveland⁵, Ivar Midtkandal⁵, Richard Twitchett⁶, and Jan Inge Faleide⁵

¹Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway (planke@vbpr.no)
²Volcanic Basin Petroleum Research (VBPR), Høienhald, 0361 Oslo, Norway
³Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry RAS, Moscow (a.g.polozov@mail.ru)
⁴DougalEARTH Ltd. Solihull, UK
⁵Department of Geosciences, University of Oslo, Oslo, Norway
⁶Natural History Museum, Earth Sciences Department, London, UK
The **Permian–Triassic extinction event** formed the boundary between the Permian and Triassic geologic periods, as well as between the Paleozoic and Mesozoic eras, approximately 252 million years ago.

It is the Earth's most severe known extinction event, with up to 96% of all marine species and 70% of terrestrial vertebrate species becoming extinct.

Wikipedia; Svensen et al. (2009)

Siberian Traps LIP
- Sediment degassing
- Magma degassing
- Tuffs
Siberian Traps

Age: ca. 252 Ma – duration of <1 Ma

Size: Max. 4 mill. km² with lava. Up to 6 km thick

Sills: Abundant subvolcanic intrusions. Up to 250 meter thick

Sediments: Pre-cambrian to Permian age carbonates, evaporites, clastic sediments, and coal

Pipes: Phreatomagmatic origin, heating of evaporites by magma

Figures from Svensen et al. (2009) and Burgess and Bowring (2015)
Putorana Plateau, Siberia: Layered Basalt Flows
Pillow lava near base

Ropy (pahoehoe) top
Drill Site Operations | Svalbard

Drilling and extraction by Arctic Drilling (Store Norske)
- Two ca 100 meter deep boreholes (90 meter continuous cores); **DD-1** (Primary) and **DD-2** (Back-up and QC)

Photography and sedimentological field logs by field crew

Fjellknaus drill rig and associated crew provided by Arctic Drilling, Store Norske Spitsbergen Kulkompani
Permian-Triassic Depositional Development

DD-1 borehole in Svalbard

- Bioturbation returns
- Restricted marine conditions
- Ash-layers

Major change in living conditions

“Extinction event”

Life expands

Zuchuat et al. (in press) "A new high-resolution stratigraphic and palaeoenvironmental record spanning the End-Permian Mass Extinction and its aftermath in central Spitsbergen, Svalbard (PALAEO_109732)"

Glaucnitic sand shoals
Upper shoreface? (Blomeier et al., 2013)
Summary

- **Successful drilling** of two cores across the P-T boundary in Svalbard

- **Mass extinction** associated with major changes in depositional system
 - *Organic-rich mud above P-T boundary*
 - *Potential carbonate and clastic Permian reservoirs below*

- Environmental changes likely triggered by the **Siberian Traps Large Igneous Province**