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Erosion rates have an important impact on the (human) environment and it is therefore 
important to constrain them. However, that is easier said than done. We can calculate 
erosion rates from point measurements or river loads, but the spatial pattern of 
erosion rates – if any – that we will obtain with this will be very coarse. Another way to 
find erosion rates is with steady state assumptions, but these assumptions are often 
far from reality. In this presentation I will show how zircon ages can be used as 
fingerprints to derive the relative contribution of various source areas and how this 
information can be converted into spatially varying erosion rates. A special focus 
lays on the uncertainty assessment of the obtained erosion rates. At the end, I will 
present an application of our proposed method on zircon age data of the Southern 
Andes.
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Provenance analysis is based on the following: 
1. Each source area is characterised by a specific signature, also called fingerprint or
tracer
2. Erosion happens in the source areas and tracers from different source areas are
transported in the river.
3. Like that, modern sand samples represent a mixture of the different source
fingerprints.

Our goal is to disentangle these and to convert this information into spatially varying 
erosion rates. Specifically, we use zircon age distributions as fingerprints. By dividing 
these age distributions into different age-bins with a specific proportion of the 
analysed zircons belonging to this age bin, these proportion-bins become passive 
tracers that are transported downstream.

At the left, an example is shown with data from Capaldi et al. 2017 showing different 
source signatures and detrital data representing a mix of these. The mix is controlled 
by the concentration of zircons in the different units – the so called zircon fertility –
and the erosion rates that occur in the different units. 
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Zircon ages are specific for each source area – geological unit – since they record the 
magmato-tectonic history of the rocks. Once zircon crystals are cooled below 1000°C, 
a clock starts to tick. This clock is represented by the hourglass; at the beginning, the 
zircon minerals contain no Pb, but after crystallization, the U starts to decay to Pb. 
Like this, every geological unit, having its own specific history, is characterised by a 
unique zircon age spectrum.
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Now that we understand how zircon-ages can be used as fingerprints in provenance 
analysis, let’s have a look at how this information can be converted into spatially 
varying erosion rates. 
Specifically, we want to invert the concentration of the different tracers found in 
modern sand samples into erosion rates. The concentration of the tracers in the
detrital samples is called d, the detrital data.
Since the number of data is smaller than the number of unknowns (we want to find 
the erosion rate at every pixel of a map), we have to apply smoothing and need a 
prior estimation. This makes the model Bayesian (theory from Tarantola, 2005; 
Jackson, 1979).
Þ The smoothing makes that adjacent pixels will have about the same erosion rates
Þ The prior estimation serves as a starting point for the erosion rate estimation

The inversion scheme that we use here is the linear least-squares method with prior 
information. It allows propagation of the errors in the posterior solution. 

In general, to make our method work, we need:
- A tracer concentration map. More specifically, for every source area, we need its

zircon-age distribution and we need to know the zircon fertility
- Detrital data: we need the zircon-age distribution of a modern sand sample
- A prior erosion guess; this can come from sediment load data or cosmogenic
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nucleide results

The parameters we can choose are:
• The smoothing distance
• The prior variance that estimates the variance around the prior estimate
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Now that we understand how the inverse method work, let’s test how it behaves. In 
this part, we check how the posterior solution changes with different inverse 
parameters. 
1. We generate synthetic detrital data from a ‘true’ erosion rate pattern that we

multiply by our source area signatures.
2. We plug this synthetic detrital data into our inverse scheme to compute a posterior

erosion map
3. We look at how close the posterior map is to the true erosion rate pattern

We start with a reference model with 10 geological units and other parameters that 
are listed above. The histograms show the zircon age distributions (or fingerprints) for 
the different source areas. As you see, the posterior map (b) is close to the true 
erosion rate pattern (a). In c, the difference between the posterior and true solution is 
given, red areas represent overestimations, blue pixels are regions where we 
underestimated the true model. When we plot the modeled data against the observed 
data, we see a good resemblance. The grey histogram shows the residuals.

5

m/y, data error = 10%
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To assess the meaning of the solution, we use 3 metrics:
1) The posterior variance
2) The resolution
3) The spread function

The posterior variance shows how much the solution has evolved away from the prior 
by adding data. Higher values are better. Below, the reduced variance is given, lower 
values mean that the added data helped to improve the solution.

The resolution is some kind of filtering matrix that shows how much spatial averaging 
took place. Values close to one near the blue dot show that little spatial averaging 
was needed to constrain the solution at the blue dot. 

The spread shows the same thing as the resolution, but in a different way. It shows 
for every pixel how much its information is used by other pixels to constrain their 
erosion rates. Low values indicate less spreading of information.

Here are the different metrics for the reference example. 

There is a well-known trade-off between variance and resolution: 
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A higher variance allows to detect local and small variations in erosion rates, but 
therefore, less smoothing or spatial averaging will be allowed so the errors will not be 
effectively averaged.

We will see this trade-off recurring in the other examples as well.
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We can also add subcatchment data to recover more complex erosion rate patterns. 
As more data is added, the difference between the true and posterior solution 
decreases and so does the posterior variance, but the additional data increases the 
resolution. 

The data is simply added by appending the data on the data vector and by appending 
the G matrix with zeros for pixels outside of the subcatchment and the concentration 
values for pixels inside of the subcatchment for which data is added.

Let’s have a look how this influences the meaning of our posterior solution. Adding 
data decreases the posterior variance at these points and increases the spread of 
information at these locations. 
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With synthetic examples we have shown that our method works, even for a wide 
range of parameter values. Now we will apply our method on natural data of the 
Mendoza catchment that were provided in the paper of Capaldi et al. 2017. 

At the left you can see the source area signatures (the colours correspond to the 
geological units) and the histograms at the right show the detrital zircon-age data. It is 
these data that we will invert for spatially varying erosion rates, starting from source 
area fingerprints (the distributions shown at the left). 
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These are the results for the inversion with appended subcatchment data. The 
erosion rastes in the western part of the catchment are very low and high erosion 
rates are only visible in the east of the study area. Research around this lake has 
shown high hillslope instability and mass movements occur here. The intermediate 
erosion rates match the USLE-predicted actual hyrological erosion rates of around 
1.5 mm/y. 
We can see that the normalized (or reduced) posterior variance is high in the whole 
study area, except for the locations with small geological units. The resolution is 
rather low and the spread is high at the subcatchment boundaries. There is a ‘blind 
spot’ in the middle of the map, as there is little to no spatial variation in geology there. 
That is represented by high normalized variances, indicating that a lot of spatial 
averaging takes place here. 

9

mailto:fien.dedoncker@unil.ch


10

mailto:fien.dedoncker@unil.ch


To understand our inverse scheme, let’s first have a look at what our data exactly 
mean. 

At the right, the forward problem is illustrated: we want to calculate the concentration 
of zircons of different age intervals in the detrital sediments.
We consider discrete age bins as passive tracers. Hence, every source area is 
characterised by a unique tracer concentration pattern.
We calculate the concentration of every tracer that we will find in the sediments (d) by 
multiplying the known tracer concentration G times the erosion rate e at this location. 
That means that d can be seen as a weighted average of the different tracer 
concentrations, with the weights being the erosion rates. 
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Our goal remains to determine erosion rates and we want to obtain our goal by 
inverting our data into erosion rates. 
We start from known tracer concentrations and detrital zircon age data to derive 
erosion rates. That means that we want to do the inverse of the forward problem, 
which is why this is called inverse modelling.
There is a problem however: our problem is underdetermined because the 
information we want to obtain (erosion rate at every pixel) is larger than the 
information we have (n number of tracers). To deal with the underdeterminedness of 
the problem, we need 1) smoothing and 2) a prior estimation of the erosion pattern. 
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This is how it looks like mathematically. Let’s break this equation down. 
Our posterior erosion rate is equal to a prior erosion rate estimation plus the 
difference between the posterior erosion rates (the general inverse times the detrital 
data) and the posterior erosion rates if prior data were to be used (G*eprior is in fact 
equal to dprior; and we do the the general inverse times dprior). That means that the 
data, the tracer concentration information, the model covariance, and the data 
covariance control in how much the posterior solution can deviate form the prior 
estimation. 
The model covariance is governed by the prior variance σm (how much will the 
posterior solution vary around eprior?) and the smoothing distance L (how much does 
the information of other, more distant points play a role in determining the posterior 
solution at this location?)
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Now that we know how we can convert the detrital data into an erosion map, we also 
want to know how we can assess the meaning of the posterior model. To do that, we 
use 3 metrics. 
The first one is the posterior variance, which indicates in how much the posterior 
solution has evolved away from the prior by adding data. If we take the diagonal of 
this matrix, we obtain the posterior variance, which we can divide by the diagonal of 
the model covariance to obtain the normalized variance. Low values of the latter 
indicate a solution that evolved further away from its prior. 
The second one is the resolution, which is a ‘filtering matrix’ between the true and 
posterior erosion rate. For a perfect solution where the posterior erosion rates are 
equal to the true erosion rates, the resolution R is equal to I. We map a row of  R
corresponding to a specific location. For a perfect solution, this map would be 0 
everywhere and 1 at the investigated location.
The third one is the spread function that shows in how much R deviates from identity. 
For a perfect solution, the spread function values would be 0 everywhere.
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Now that we understand how the inverse method work, let’s test how it behaves. In 
this part, we check how the posterior solution changes with different inverse 
parameters. We try to recover a true erosion map (b in the figure) from data (d in the 
figure) created with our forward model that we plug into our inverse model; we then 
check the difference between the true model (b in the figure) and the posterior model 
(e in the figure).
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What would happen if we use a different geological setting? With less geological 
units, it’s more difficult to recover the true erosion rate map as there are less source 
units that can be impacted by the erosion rate pattern. The orientation of the units is 
clearly visible in the example where only 2 units are used.
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Now, we test the other parameters.
a) More tracers => more data => better solution
b) Higher data error => less trust in data => worse and smoother solution
c) Higher prior variance => higher variance around eprior allowed => better solution
d) Higher smoothing distance => each pixel depends more on further-away

information => better solution
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With less geological units, there is less data available so the posterior variance 
increases, while the resolution decreases. 
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a) Less tracers
Þ less data 
Þ lower resolution
Þ higher variance

b) Higher data error
Þ less trust in data 
Þ lower resolution 
Þ higher variance

c) Lower prior variance
Þ lower variance around eprior allowed
Þ higher averaging: more units play a role

d) Higher smoothing distance
Þ higher averaging: more units play a role
Þ Lower variance
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As discussed above, there is a well known trade-off between resolution and variance. 
Imagine that you want to count the number of leaves in a garden. For a high 
resolution, the variance in the number of leaves per m2 will be large, but small 
imprecisions will be taken into account. If we want to decrease the variance by spatial 
averaging, we need to decrease the resolution. A resolution matrix that is closer to 
identity, indicating that the posterior solution is less a result of spatial averaging, 
corresponds to smaller spread function values.
Therefore, the plots above nicely illustrate this trade-off. The colours indicate the sum 
of the absolute difference between the true and posterior solution and on the y-axis 
the reduced variance is plotted and on the x-axis the sum of the spread function 
values. The posterior solution that is closest to the true solution is in both cases found 
for the smallest normalized variance, paired with a slightly higher spread, so a 
reduction in posterior variance leads to solutions closer to the true model, even 
though the resolution is slightly worse.

Higher prior variance
Þ Further evolution from eprior allowed

Higher smoothing distance
Þ higher averaging: more units play a role
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Þ Lower variance
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We chose this study area because forward experiments of Capaldi et al. 2017 
resulted in synthetic data that match the actual detrital zircon age data very well. 

The application of the inverse method results in posterior erosion rates with high 
erosion rates in the east and the west, intermediate erosion rates in the centre of the 
catchment and very low erosion rates in the very western end of the catchment. Note 
that since we have not a lot of geological variability in the centre of the catchment, the 
erosion rates here result from high spatial averaging, which is illustrated in the 
resolution mat (figure c). The normalized variance is rather high and sol are the 
spread values for the eastern part of the catchment, where the geological unit patches 
are smallest. 

The suddenly high erosion rates in the western part of the catchment can be caused 
by two things. The first hypothesis is that these are caused by the high number of 
glaciers in this area which are known as strong erosional agents, but then, why 
wouldn’t the other western catchments be characterized by high erosion rates as 
well? So we need to propose a second hypothesis. We see that around the lake at 
the eastern side of the catchment, the erosion rates are high, and that this region is 
characterised by the same lithology as the region in the west (the light yellow patches 
in the geological map on the left). That means that if the erosion rates around the lake 
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are high - but not in the west of the region – that we will find a lot of fignerprints of this 
lithology in the detrital data, which will be interpreted by the model as high erosion 
rates everywhere where this lithology occurs. But how can we decouple these 2 
regions? By adding subcatchment data  (S1 and S2 in the geological map).
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These are the results for the case where we appended subcatchment data. Now, the 
erosion rates have become very low in the western part of the catchment as well, 
which supports our second hypothesis from before. You can now indeed see that as 
the two regions have become decoupled, only the region around the lake is 
responsible for the high erosion rates, which means that the erosion rates here have 
increased up to 8 mm/y. Research around this lake has shown high hillslope 
instability and mass movements occur here. The intermediate erosion rates match the 
USLE-predicted actual hyrological erosion rates of around 1.5 mm/y. 
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- Zircon age analysis is common thanks to technological advances that allow
analysis of large batches of zircon grains

- The trade-off between variance and resolution has been shown above and means
that testing of parameters should always be done to pick the optimal parameter
values.

- With the synthetic examples, we saw that with more geological units and more
tracers (discrete age bins), our posterior solution was closest to the true solution.

- By adding subcatchment data, we can recover more complex true erosion patterns,
sharp borders are better represented
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The datasets that our method requires can have some limitations that might distort 
the detrital zircon age signal. 1. 
1. If the catchment connectivity is low, some particles that were eroded cannot reach

the detrital sampling location within a short timespan. That means that areas far
away from the sampling location are possibly underrepresented, thereby distorting
the resulting erosion rate map. However, adding subcatchment data can help to
diminish these connectivity effects.

2. To convert the relative source contributions into erosion rates, we also need the
sediment load, which is unfortunately quite hard to determine, certainly if we also
want to quantify the bedload.

3. Hydraulic sorting leads to the preferential transport of grains with a certain grain
size. If a relationship exists between age and grain size, this hydraulic sorting can
lead to the distortion of the detrital signal. Verifying if this relationship exists is
crucial and sampling grains of different grain sizes decreases winnowing effects.

4. Zircon mineral concentrations – so called fertility – can vary over 3 orders of
magnitude within one catchment. We need to take this into account as the detrital
tracer concentrations not only depend on the amount of erosion in each source
area, but also on the zircon fertility. For example for a source area with very high
erosion rates but low fertility, we will find its fingerprints back in low
concentrations. If we don’t account for fertility variations, our model will interpret
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this as very low erosion rates.

Our method is versatile: other tracers such as magnetism of minerals, colour of 
grains, stable isotopes, geochemical components, organic matter concentration and 
mineralogical properties can be used in stead of zircon distributions. The source 
areas also don’t have to be defined as geological units, we can define them for 
example as subcatchments with fingerprints found in modern sand samples. 
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