Introduction

Computed tomography (CT) is a versatile, non-destructive technique for 3-D object analysis, theoretically allowing for the discrimination and quantification of individual mineral phases within a given sample.

A novel approach

Here, we introduce a novel approach to constrain individual mineral phases of a given sample using the distribution of aragonite and calcite in two diagenetically altered tropical corals as an example in combination with reference material.

Work flow

1. **Sample imaging and manual reference material segmentation**

 - 3-D sample reconstruction
 - Isolated reference material
 - Manually segmented
 - Coral
 - Aragonite
 - Abiotic aragonite
 - Air
 - C1*: Coral variable aragonite-calcite mix
 - C2*: Coral mainly calcite

 *Used corals originate from Zanzibar, last interglacial

2. **Calculation of mean radiodensity variability throughout each segmented reference material and surrounding air**

 - Aragonite
 - Calcite
 - Air

 *Script for automated multiple mean values calculation developed by S. Krause, K. Engelkes, S. Büsse

3. **Definition of min-max intensity values for each material**

 - Plot of mean values vs 3D of radiodensity for each reference material and air to identify reliable min-max radiodensity boundaries

 Due to material heterogeneity and scan settings approx. 10% of overlapping mean radiodensity of aragonite and calcite in this sample

Real-life problems using CT

A reproducible, straight-forward mineral identification and quantification is hampered by the natural mineral heterogeneity and individual X-ray source aging of signal-to-noise ratio of CT-scanners.

4. Seed point setting and watershed algorithm

Small volumes (e.g. 25x25x25 voxel) of the entire sample are probed for their mean radiodensity value. In case it falls within the definition for a pre-defined mineral, a seed point for it is set. Subsequently, seed points are propagated with the watershed algorithm.

Achievements

- Robust non-destructive reconstruction of multi mineral phases, suitable for sample pre-investigation

Current limitations

- Approx. 10% of aragonite is not correctly assigned