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The global carbon cycle is sensitive towards climate-driven internal variability,
which might olbscure the identification of changes in anthropogenic emissions.
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assessed by global stocktake.
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» On which time-scales does internal variability in
atmospheric CO2 dominate over changes in the
forced signal?
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Research questions: Inherent uncertainty in atmospheric CO»
orojections and attribution of emission reductions

» On what time-scales are trend reductions in atmospheric CO»
attributable to emission reduction’

— What is the probabllity that even if emissions are reduced, the trend In
atmospheric CO2 keeps rising even stronger?

— How many years after reduced emissions can we be certain that these
reduced emissions caused a reduction in atm. CO2 trend”
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MPI-ESM Grand Ensemble provides a 1% resolution in climate
event attribution [Marotzke, 2019].
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» Causal Theory [Pearl 2020, Hannart et al. 2016]  » MPI-ESM1.1-LR historical + RCPs
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— 3 scenarios

- Factual world — Atmosphere & Land: T63 (1.8°)
- Counter-factual world — Ocean: GR15 (1.5°)
- Necessary and sufficient causality — prescribed atmospheric CO2 forcing
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Diagnosing global atmospheric CO2 variations from the prescribed
CO:2 signal and the global carbon sinks ensemble mean residuals.
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» ASSumptions:

— Instantaneous global atmospheric mixing [Ballantyne et al. 2012]

— Internal variability of carbon cycle driven by climate variability

— Disregards short-term influence of atm. CO2 variability on carbon cycle
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The MPI-ESM Grand Ensemble provides a Paris targets (RCP2.6) and current
pledges pathway (RCP4.5) scenario with diverging CO2 forcing after 2020.

» EXpected climate response to emission cuts: decrease in atm. CO» trend

0 - I

» Uninitialised large ensemble simulations: — RCP2s —— Mauna Loa observed

m RCP4.5 - (lobal mean observed
4 - —= emission reductions start "

— 100 ensemble members
— 2 scenarios:

 RCP2.6: emission reduction to reach Paris goals

atm. CO, anomaly [ppm]

 RCP4.5: current, no emis. reductions before 2040

« Emission cuts as policy change from RCP4.5 to RCP2.6 2005 2010 2015 2020 2025 2030

Time [Year]
» Probabllities of reduction in 5-year trends
100
PRCPx = Z (tl’endez,,(l)sm_zozo > trendggszl—zozs) Y0 [adopted from Marotzke, 2019]
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Atmospheric CO2 5-year trends might even increase despite of
implemented emission reductions policy due to internal variabillity.
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Three facets of causation

» hecessary causation
- Without switch C1, bulb

Does policy change cause reduced atm. CO2 trends?

= s off. Yet Cq1 not always turns on

- ask retrospectively whether policy change was necessary

- Bulb E is lit every time C+ is turned on. Yet if C+ is off, E might still be lit by Co b P

- ask in advance whether a policy change would be

reduction

PS:

[Pearl 2020, Hannart et al. 2018]

PRCP2.6 - PRCP4.5 — 042 g

|
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=, as Co is also required /T

PRCP4.5 — 031 8

Prepos

to cause a trend E

» necessary and sufficient causation

- Turning on C+ always lights E, and E may not be lighted unless C+ is on.

- policy change is both necessary and sufficient Pyg = Prepr g — Prepas = 0.22 e
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Reduced emissions are certain to cause reduced trends In atmospheric
CO2in a sufficient causation sense when considering 10-year trends.

time of detection of emission reduction [similar Tebaldi and Friedlingstein, 2013]
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Diagnose atmospheric CO;
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» Ask In advance whether a policy
~ change would be to
cause a trend reduction:
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Prepae — Prepas
Hannart et al. 2016]  Pg =

Causation: Trend reduction: 1 — PRCP4.5
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P
P, = 1 — —RCP43

Prepo s

............................................................ ) :)O“Cy Change from :%03[5 10 :%CP26

6 7 8 O 10 11 12 13 14 15 IS both necessary and sufficient:

rend length [years] around 2020 Pyns = Prepae — Prepas
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Take home messages: Inherent uncertainty in atmospheric CO»
porojections might disguise emission reduction effects up to a decade.

» Policy change from

RCP4.5 to RCP2.6 Is

to cause 5-year CO2 trend reduction

with P=42% and necessary with P=31% and necessary and sufficient with P=22%.

» These probabilities, when covering the time-scales of the Global Stocktake, are far from
certain.

» Certainty is reached after 10 (

causation) and 15 (necessary) years.

» Results are based on one model. All models have internal variabillity.

» Policy-makers should be informed by initialized predictions about near-term internal
variability in atmospheric CO2 evolution [Spring and llyina, 2020].
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Assumptions about diagnosed atmospheric COz

[
Z (CO2flux’(t’)) 5 f;’?gc +
o —— e e/
= time mean control = Historical: CO2, am forcing (IAM) B
O
. . . o) ﬁA——v%
-= member mean esmHistorical: member mean CO» 3 e
» AsSsumptions:
— Instantaneous global atmospheric mixing: conversion factor 2.12 PgC to Jlobal surface CO, flux RCP2.6
1 ppm [Ballantyne et al. 2012] 5 o rcerble mean
— Internal variability driven by climate-induced variability (temperature C *L '# — ,\ ,, , ; |
effect on biogeochemistry, circulation changes, ...) O s W VW “;\{ " - w
o ' ‘

T
— ignores short-term terrestrial CO: fertilisation effect and oceanic _10- T
sensitivity to variability in CO2 (as all concentration-driven experiments)

. . | o 1850 1900 1950 2000 2050
— Same approach as diagnosing compatible emissions from concen- time

tration-driven simulations [Jones, 2013] but “backwards”
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Verification: Diagnosing global atmospheric CO2 variations tracks
actual global atm. CO2 concentrations in emission-driven simulations.

' (COMux )2 +
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Verification of detrended diagnostic CO; sm with prognostic from a 9-member CMIP6 esmHistorical MPI-ESM ensemble
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MPIESM Grand Ensemble simulates a realistic range of the
atmospheric CO2 annual growth rate.
Growth Rate of atmospheric CO, 1958-2018 modsied ' obssrved

MPI-ESM GE modelled global diagnostic CO, Growth Rat:
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emissions over time in RCP scenarios
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