please ping me with questions: @realaaronspring aaron.spring@mpimet.mpg.de

Inherent Uncertainty Disguises Attribution of Reduced Atmospheric CO₂ Growth to Emission Reductions for up to a Decade

Aaron Spring, Tatiana Ilyina and Jochem Marotzke Max Planck Institute for Meteorology

This talk will also be delivered by videoconferencing Friday May 8th 17:45 via zoom. You can find the agenda here and you can sign up here.

Max-Planck-Institut für Meteorologie

International Max Planck Research School on Earth System Modelling

The global carbon cycle is sensitive towards climate-driven internal variability, which might obscure the identification of changes in anthropogenic emissions.

- Long-term dominance of the forced signal undisputed
- When are emission reductions detectable in atmospheric CO₂ measurements?
- ➡COVID19 signal not yet detectable at Mauna Loa [@PFriedling]
- ➡Policy-relevant when emission reduction efficacy is assessed by global stocktake.
- On which time-scales does internal variability in atmospheric CO₂ dominate over changes in the forced signal?

Max-Planck-Institut für Meteorologie

projections and attribution of emission reductions

- On what time-scales are trend reductions in atmospheric CO₂ attributable to emission reduction?
- What is the probability that even if emissions are reduced, the trend in atmospheric CO₂ keeps rising even stronger?
- How many years after reduced emissions can we be certain that these reduced emissions caused a reduction in atm. CO₂ trend?

Research questions: Inherent uncertainty in atmospheric CO₂

MPI-ESM Grand Ensemble provides a 1% resolution in climate event attribution [Marotzke, 2019].

- Uninitialised ensemble to separate internal variability from forced signal [Maher et al., 2019]:
- 100 ensemble members from piControl
- 3 scenarios
- ► Causal Theory [Pearl 2020, Hannart et al. 2016] ► MPI-ESM1.1-LR historical + RCPs
- Factual world
- Counter-factual world
- Necessary and sufficient causality

Max-Planck-Institut für Meteorologie

- Atmosphere & Land: T63 (1.8°)
- Ocean: GR15 (1.5°)
- prescribed atmospheric CO₂ forcing

Diagnosing global atmospheric CO_2 variations from the prescribed CO_2 signal and the global carbon sinks ensemble mean residuals.

- Assumptions:
- Instantaneous global atmospheric mixing [Ballantyne et al. 2012]
- Internal variability of carbon cycle driven by climate variability
- Disregards short-term influence of atm. CO2 variability on carbon cycle

Max-Planck-Institut für Meteorologie

5 °C† Worst-case no policy (SSP5-8.5)*

Highly unlikely Often wrongly

used as 'business as usual'

°C Average no policy (SSP3-7.0)

Unlikely

Reversal of some current policies

3 °C

Weak mitigation (SSP4-6.0)

2.5 °C

Modest mitigation (SSP2-4.5)

Likely Given current policies

1.5 °C

Mitigation required to meet Paris goals (SSP1-1.9)

[Hausfather and Peters, 2020]

The MPI-ESM Grand Ensemble provides a Paris targets (RCP2.6) and current pledges pathway (RCP4.5) scenario with diverging CO₂ forcing after 2020.

- Expected climate response to emission cuts: decrease in atm. CO₂ trend
- Uninitialised large ensemble simulations:
- 100 ensemble members
- 2 scenarios:
- RCP2.6: emission reduction to reach Paris goals
- RCP4.5: current, no emis. reductions before 2040
- Emission cuts as policy change from RCP4.5 to RCP2.6
- Probabilities of reduction in 5-year trends 100

$$P_{RCPx} = \sum_{ens=1}^{100} (trend_{ens}^{2016-2020} > trend_{ens}^{2021}$$

Max-Planck-Institut für Meteorologie

[adopted from Marotzke, 2019]

Atmospheric CO₂ 5-year trends might even increase despite of implemented emission reductions policy due to internal variability.

Three facets of causation

Does policy change cause reduced atm. CO₂ trends?

• necessary causation

- Without switch C_1 , bulb E is off. Yet C_1 not always turns on E, as C_2 is also required
- ask retrospectively whether policy change was necessary
- Sufficient causation
 - Bulb E is lit every time C_1 is turned on. Yet if C_1 is off, E might still be lit by C_2
 - ask in advance whether a policy change would be sufficient to cause a trend reduction

• necessary and sufficient causation

- Turning on C_1 always lights E, and E may not be lighted unless C_1 is on.
- policy change is both **necessary and sufficient** $P_{NS} = P_{RCP2.6} P_{RCP4.5} =$

Max-Planck-Institut für Meteorologie

Intro - Methods - **Results** - Conclusion

Switch C_1 = policy change from RCP4.5 to RCP2.6

CC

Intro - Methods - **Results** - Conclusion

Reduced emissions are certain to cause reduced trends in atmospheric CO_2 in a sufficient causation sense when considering 10-year trends.

• Ask in advance whether a policy change would be sufficient to cause a trend reduction:

Causation: Trend reduction:

- [Hannart et al. 2016] $P_S = \frac{P_{RCP2.6} P_{RCP4.5}}{1 P_{RCP4.5}}$
- Ask retrospectively whether policy change was **necessary**:

$$P_N = 1 - \frac{P_{RC}}{P_{RC}}$$

▶ Policy change from RCP4.5 to RCP2.6 is both necessary and sufficient: $P_{NS} = P_{RCP2.6} - P_{RCP4.5}$

10

Take home messages: Inherent uncertainty in atmospheric CO₂ projections might disguise emission reduction effects up to a decade.

- Policy change from RCP4.5 to RCP2.6 is sufficient to cause 5-year CO₂ trend reduction with P=42% and *necessary* with P=31% and *necessary and sufficient* with P=22%.
- These probabilities, when covering the time-scales of the Global Stocktake, are far from certain.
- Certainty is reached after 10 (sufficient causation) and 15 (necessary) years.
- Results are based on one model. All models have internal variability.
- Policy-makers should be informed by initialized predictions about near-term internal variability in atmospheric CO₂ evolution [Spring and Ilyina, 2020].
- ▶ This influence of internal variability in atm. CO₂ on sub-decadal time-scales in emission reduction attribution is challenging to communicate to the public.

References

- Marotzke, Jochem. "Quantifying the Irreducible Uncertainty in Near-Term Climate Projections." Wiley Interdisciplinary Reviews: Climate *Change* 10, no. 1 (**2019**): e563. <u>https://doi.org/10/gfq92h</u>.
- **Ballantyne**, A. P., C. B. Alden, J. B. Miller, P. P. Tans, and J. W. C. • Giorgetta, Marco A., Jungclaus Johann, Reick Christian H., Legutke Stephanie, Bader Jürgen, Böttinger Michael, Brovkin Victor, et al. White. "Increase in Observed Net Carbon Dioxide Uptake by Land and Oceans during the Past 50 Years." Nature 488, no. 7409 (August "Climate and Carbon Cycle Changes from 1850 to 2100 in MPI-ESM Simulations for the Coupled Model Intercomparison Project **2012**): 70–72. <u>https://doi.org/10/f35g9p</u>. Phase 5." Journal of Advances in Modeling Earth Systems 5, no. 3 Hannart, A., J. Pearl, F. E. L. Otto, P. Naveau, and M. Ghil. "Causal (September 17, **2013**): 572–97. <u>https://doi.org/10/f5dzvh</u>. Counterfactual Theory for the Attribution of Weather and Climate-Maher, Nicola, Sebastian Milinski, Laura Suarez-Gutierrez, Michael Related Events." Bulletin of the American Meteorological Society 97,
- Botzet, Mikhail Dobrynin, Luis Kornblueh, Jürgen Kröger, et al. "The no. 1 (**2016**): 99–110. <u>https://doi.org/10/gf75gq</u>. Max Planck Institute Grand Ensemble - Enabling the Exploration of Hannart, A., & Naveau, P. (2018). Probabilities of Causation of Climate System Variability." Journal of Advances in Modeling Earth Climate Changes. *Journal of Climate*, *31*(14), 5507–5524. doi: <u>10/</u> gdr3q9 *Systems* 0, no. ja (June 4, **2019**). <u>https://doi.org/10/gf3kgt</u>.
- **Tebaldi**, Claudia, and Pierre **Friedlingstein**. "Delayed Detection of Climate Mitigation Benefits Due to Climate Inertia and Variability." Proceedings of the National Academy of Sciences, October 4, 2013, 201300005. https://doi.org/10/n7p.

'The research leading to these results has received funding from the EU Horizon 2020 research and innovation program under grant agreement no. 821003 (4C project). The content of this presentation reflects only the author's view. The European Commission is not responsible for any use that may be made of the information it contains."

• Spring, A., & Ilyina, T. (2020). Predictability Horizons in the Global Carbon Cycle Inferred From a Perfect-Model Framework. *Geophysical Research Letters*, 47(9). doi: <u>10/ggtbv2</u>

- ► Hausfather, Z., & Peters, G. P. (2020). Emissions the 'business as usual' story is misleading. *Nature*, 577(7792), 618–620. doi: <u>10/ggjr4t</u>
- **Pearl**, J. (2000). Causality: Models, reasoning, and inference. New York, NY: Cambridge University Press.

Assumptions about diagnosed atmospheric CO₂

- Instantaneous global atmospheric mixing: conversion factor 2.12 PgC to 1 ppm [Ballantyne et al. 2012]
- Internal variability driven by climate-induced variability (temperature effect on biogeochemistry, circulation changes, ...)
- ignores short-term terrestrial CO₂ fertilisation effect and oceanic sensitivity to variability in CO_2 (as all concentration-driven experiments)
- Same approach as diagnosing compatible emissions from concentration-driven simulations [Jones, 2013] but "backwards"

Max-Planck-Institut für Meteorologie

= Historical: $CO_{2,atm}$ forcing (IAM) esmHistorical: member mean CO₂

Verification: Diagnosing global atmospheric CO₂ variations tracks actual global atm. CO₂ concentrations in emission-driven simulations.

Max-Planck-Institut für Meteorologie

Intro - Methods - Results - Conclusion

MPIESM Grand Ensemble simulates a realistic range of the atmospheric CO₂ annual growth rate.

	modelled	observed
count	6000.00	60.00
mean	1.54	1.58
std	0.85	0.67
min	-1.34	0.28
25%	0.95	1.04
50%	1.54	1.52
75%	2.12	2.04
max	4.50	3.01

emissions over time in RCP scenarios

