Ground motion and PSI density analysis from Envisat and Sentinel1a InSAR data in the context of a complex landslide monitoring strategy in Karnali river basin, Far-Western Nepal

Filippo Vecchiotti¹, Arnulf Schiller¹, Anna Sara Amabile¹, Carlotta Guardiani¹, Megh Raj Dhital², Amrit Dhakal², Bharat Raij Pant², Marc Ostermann¹, and Robert Supper¹

¹ GBA - Geological Survey of Austria; ² Tribhuvan University Kathmandu
This document contains complementary material concerning our contribution to the EGU General Assembly 2020, May 4-8 online, taking place in World Wide Web due to the Covid-19 pandemic. The content addresses geoscientists and institutions of different expertise and does not represent a final publication (which is intended). The authors would appreciate to be contacted in case of further use of the material.

Thank you.

Contact: arnulf.schiller@geologie.ac.at
DInSAR as part of a complex regional and local landslide monitoring approach in framework of the project ‘Landslide-EVO’

Duration: 2017-2021, SHEAR funded, lead: Imperial College London.

http://www.shear.org.uk/research/landslide-evo.html
Objectives of the study

Preparation of
- PSI a priori visibility map
- PSI density map
- Multi-Temporal-DInSAR deformation maps
- ‘Spin off products’ (e.g. ground instability map)

Scale:
- Regional: Far Western Nepal
- Local: Bajedi (monitoring system), Sunkuda

Purpose:
- Support in selection of landslide sites for detailed surveying and monitoring
- Support in planning and part of complex monitoring scheme
- Data base for supporting decision processes for adaption to landslide risk on local and regional level.
Methodology

A) Reviewing available data resources (DEM, geographical, landcover, geomorphology, geology and tectonics, climatology and meteorology, remote sensing - INSAR)

B) Selection and implementation of feasible software (ArcGIS, GRASS GIS, QGIS, SAGA, Orfeo, Phyton plugins and remote sensing services)

C) Generation of a priory PSI visibility map (RI-index)

D1) Generation of a priory PSI density map (RI-index combined with landcover classes OSM data)

D2) Reviewing, test and selection of methods (multitemporal DInSAR/PSI-InSAR, SBAS)

D3) Corrections/filtering specific to distinct topography and atmospheric conditions

E) Deriving deformation rates (along line of sight - VLOS, along slope - VSLOPE)

F) Accompanying: Compilation of maps of ground instability and landslides
Aim of differential SAR technique is to detect ground deformations between 2 distinctive repeat passes of the SAR satellite. The phase difference of an interferogram can be expressed by (Strozzi et al. 2001):

\[\Phi_{\text{interf}} = \Phi_{\text{flat}} + \Phi_{\text{decorr}} + \Phi_{\text{orbit}} + \Delta \Phi + \Phi_{\text{atm}} + \Phi_{\text{noise}} \]

Most important part is represented by the way phase \(\Delta \Phi = \Phi_{\text{topo}} + \Phi_{\text{diff}} \).

In order to compute the \(\Phi_{\text{diff}} \) (the final interferogram) a model of a theoretical interferogram (deduced from an a priori DEM) is subtracted from the measured InSAR image (\(\Phi_{\text{diff}} = \Delta \Phi - \Phi_{\text{topo}} \)). Finally once the \(\Phi_{\text{diff}} \) is unwrapped or in other words the phase ambiguity (between \(-2\pi\) and \(2\pi\)) is resolved the equation 2 allows to calculate the \(\Delta \text{rdiff} \) which express the terrain motion in cm (fig.3). \(\Phi_{\text{diff}} = 4\pi/\lambda \Delta \text{rdiff} \) (2)
Phase information

\[\Phi_{\text{interf}} = \Phi_{\text{flat}} + \Phi_{\text{decorr}} + \Phi_{\text{orbit}} + \Phi_{\text{topo}} + \Phi_{\text{diff}} + \Phi_{\text{atm}} + \Phi_{\text{noise}} \]

contains furthermore:

- Phase introduced by theoretical flat topography model: \(\Phi_{\text{flat}} \)
- Decorrelation phase caused by vegetation, significant surface changes (construction works, acute landslides, earthquakes deformations, snow cover) – \(\Phi_{\text{decorr}} \).
- Phase introduced by different orbit locations of satellite during passes: \(\Phi_{\text{orbit}} \)
- Atmospheric phase shift caused by water content variations, turbulences - \(\Phi_{\text{atm}} \)
- Ground distortions caused by the lateral view of the SAR satellites onto topography: foreshortening, layover, shadowing (see figure below)
- General system noise \(\Phi_{\text{noise}} \) (hardware, temperature)

Optimization workflow for classic DInSAR processing (from Micheloud et al. 2012)

ERA-I data used by the software TRAIN to compute the atmospheric phase screening overlaid to the area processed in far Western Nepal.

Ground distortions generated by the lateral view of the SAR satellites (from Lesson 8: Radar and Microwave Remote Sensing)
Overview of the most important characteristics of SAR satellites used for ground motion applications.

<table>
<thead>
<tr>
<th>Old satellites</th>
<th>Time span</th>
<th>Sensor type</th>
<th>Wavelength</th>
<th>Spatial resolution (m)</th>
<th>Temporal resolution (days)</th>
<th>max. vel. (cm/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERS</td>
<td>1992-2000</td>
<td>band C</td>
<td>5.6 cm</td>
<td>20</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>ENVISAT</td>
<td>2002-2010</td>
<td>band C</td>
<td>5.6 cm</td>
<td>20</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>Radarsat</td>
<td>1995-</td>
<td>band C</td>
<td>5.6 cm</td>
<td>30</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Radarsat-2</td>
<td>2007-</td>
<td>band C</td>
<td>5.6 cm</td>
<td>8</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>Alos</td>
<td>2006-2011</td>
<td>band L</td>
<td>24.2 cm</td>
<td>7</td>
<td>46</td>
<td>45</td>
</tr>
<tr>
<td>Cosmo-Sky-Med</td>
<td>2007-2014</td>
<td>band X</td>
<td>3.1 cm</td>
<td>2.5</td>
<td>8</td>
<td>70</td>
</tr>
<tr>
<td>Terra-SAR-X</td>
<td>2007-2018</td>
<td>band X</td>
<td>3.1 cm</td>
<td>2.8</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>New satellite missions</th>
<th>Time span</th>
<th>Sensor type</th>
<th>Wavelength</th>
<th>Spatial resolution (m)</th>
<th>Temporal resolution (days)</th>
<th>max. vel. (cm/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentinel-1</td>
<td>2014-2024</td>
<td>band C</td>
<td>5.6 cm</td>
<td>20</td>
<td>6</td>
<td>85</td>
</tr>
<tr>
<td>Radarsat-Constellation</td>
<td>2018-2026</td>
<td>band C</td>
<td>5.6 cm</td>
<td>5</td>
<td>3</td>
<td>160</td>
</tr>
<tr>
<td>Alos-2</td>
<td>2013-2017</td>
<td>band L</td>
<td>24.2 cm</td>
<td>3</td>
<td>14</td>
<td>145</td>
</tr>
<tr>
<td>Cosmo-Sky-Med-2</td>
<td>2015-2023</td>
<td>band X</td>
<td>3.1 cm</td>
<td>1</td>
<td>(8)</td>
<td>(70)</td>
</tr>
<tr>
<td>Terra-SAR-X-2</td>
<td>2015-2018</td>
<td>band X</td>
<td>3.1 cm</td>
<td>1</td>
<td>(11)</td>
<td>(26)</td>
</tr>
</tbody>
</table>

Persistent Scatterers In SAR (PSI)
Standard PSI technique processes all interferograms with respect to same master image. No spectral filtering is applied in order to maximize full resolution and an a priori DEM is used for evaluation of the residual topography and minimize phase ambiguities.

Small Baseline Subset InSAR: SBAS uses a network of redundant interferograms with no need to use a unique master scene:

Right figure: Network of 13 interferograms used for SBAS processing of track 55.
The “a priori PSI visibility map” for far western Nepal was generated in order to evaluate the feasibility of Differential SAR Interferometric (DInSAR) applications for landslide-affected slopes. The a priori PSI visibility map is useful to forecast which areas are expected to be visible from space-borne SAR sensors (Cascini et al., 2010). This method helps to predict the density of the Persistent Scatterers PS (the targets for each satellite) and therefore facilitates to select the image dataset over the areas of interest for monitoring. The factors determining the visibility of target area of a slope are: 1) the orientation of the employed satellites Line-Of-Sight (LOS) and 2) the radar acquisition geometry with respect to the local slope orientation and aspect. DEM data from TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) and the ASTER DEM 30m.

\[RI = -\sin(S \cdot \sin(A + \varphi) - \theta) \]

\(S \) = local terrain slope
\(A \) = aspect angle
\(\varphi \) = orientation angle
\(\theta \) = incidence angle

The a priori PSI density map” for East western Nepal was generated in order to evaluate the feasibility of MT-InSAR applications for landslide affected slopes. The factors that determine the quantity of PS per unit area are:

- the a priori PSI visibility map based on RI index
- land cover map, thus vegetation cover and presence of building and other infrastructures (pylons, railways, etc.), rock and debris (Cigna et al., 2014).

The presence of stable reflectors in the ground surface can be estimated from the land cover map. Therefore, the integration of land cover data in the proposed geometrical model (a priori visibility map) can improve the prediction of those areas where PS maybe detected (Notti et al. 2014).

Data resources for land cover: Globcover global land cover map, OpenStreetMap.

Overview of the PS density values assigned to each new land cover class

<table>
<thead>
<tr>
<th>method</th>
<th>corine</th>
<th>new land cover</th>
<th>class code</th>
<th>ENVISAT & ERS (PS/km²)</th>
<th>Radarsat (PS/km²)</th>
<th>Alos Palsar (PS/km²)</th>
<th>CosmoSkyMed (PS/km²)</th>
<th>TerraSAR-X (PS/km²)</th>
<th>Sentinel-1 (PS/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique value</td>
<td>335</td>
<td>glacier</td>
<td>class1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>averaged</td>
<td>211-212-242</td>
<td>crop</td>
<td>class2</td>
<td>28</td>
<td>33</td>
<td>108</td>
<td>24</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>averaged</td>
<td>311-313</td>
<td>forest</td>
<td>class3</td>
<td>8</td>
<td>9</td>
<td>44</td>
<td>0</td>
<td>0</td>
<td>23</td>
</tr>
<tr>
<td>Unique value</td>
<td>324</td>
<td>shrub</td>
<td>class4</td>
<td>10</td>
<td>12</td>
<td>76</td>
<td>36</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>averaged</td>
<td>321-322</td>
<td>grass</td>
<td>class5</td>
<td>64</td>
<td>73</td>
<td>287</td>
<td>83</td>
<td>104</td>
<td>190</td>
</tr>
<tr>
<td>Unique value</td>
<td>332</td>
<td>bare land</td>
<td>class6</td>
<td>100</td>
<td>115</td>
<td>382</td>
<td>722</td>
<td>903</td>
<td>300</td>
</tr>
<tr>
<td>Unique value</td>
<td>112</td>
<td>urban</td>
<td>class7</td>
<td>600</td>
<td>693</td>
<td>688</td>
<td>4330</td>
<td>5419</td>
<td>1800</td>
</tr>
<tr>
<td>averaged</td>
<td>511-512</td>
<td>water</td>
<td>class8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unique value</td>
<td>122</td>
<td>roads</td>
<td>class9</td>
<td>320</td>
<td>369</td>
<td>382</td>
<td>2309</td>
<td>2810</td>
<td>960</td>
</tr>
</tbody>
</table>
Generation of Deformation / Velocity Maps

Extraction of the deformation rate along the slope (Vslope)

Displaysment measurement of PSI and SBAS methods are calculated along the LOS. In order to retrieve VSLOPE a conversion is needed. Since normally we are not dealing with flat terrains if the LOS measurement in 3D wants to be exploited a projection along the slope is required. The LOS projection of deformation can be obtained as the scalar product of 3D displacement v velocity and the so-called sensitivity versor u whose components highlight the impact of both horizontal (easting and northing) and vertical phenomena on the LOS measurement carried out by the SAR system (Colesanti and Wasowski, 2006). The LOS of ENVISAT satellite in ascending mode is characterized by the azimuth (α) = 260.7° which expresses the angle between the N and the negative direction of the LOS vector and look angle (β) = 23.4°.

![Geometrical characteristics for ENVISAT in ascending mode. α, azimuth; β, tilt (measured between LOS and horizontal direction); θ, look angle (measured between LOS and vertical direction).](image)

\[V_{\text{LOS}} = x \cdot u = [V_{\text{East}} V_{\text{North}} V_{\text{Vertical}}] \cdot \begin{bmatrix} E_{\text{Slope}} \\ N_{\text{Slope}} \\ Z_{\text{Slope}} \end{bmatrix} \]

VSLOPE: projection of VLOS onto slope gradient direction

\[ELOS = \sin \alpha \cdot \cos \beta \]
\[NLOS = \cos \alpha \cdot \cos \beta \]
\[ZLOS = \sin \beta \]

\[\text{VSLOPE} = \rho \cdot \text{VLOS} \quad \text{with} \quad \rho = (ELOS \cdot \text{ESLOPE} + NLOS \cdot \text{NSLOPE} + ZLOS \cdot \text{ZSLOPE})^{-1} \]

ELOS, NLOS and ZLOS values represent the percentages of the real motion that it is possible to estimate along the 3 direction E-W, N and vertical. Normally for the modelling of the LOS results, we adopt a simplified geomorphologic scheme where the motions affecting the areas are assumed to be purely translational along the instable slope. In this way, the LOS deformation vector in both ascending and descending mode (VLOS) is converted in VSLOPE in order to represent the motion along the steepest slope direction (Cigna et al. 2011, Cascini et al. 2010). The conversion to slope velocity was performed for each group of pixels using the following equations:

![Flow-chart for the generation of the advanced combined VSLOPE and VLOS landslide velocity map for the SBAS method applied to the track 205 descending (modified after Cascini et al. 2010).](image)
A priori PS visibility map for descending geometry (30m resolution) for the whole region of interest and representation of a close look at the Bajedi basin to allow for a satellite inter-comparison.

A priori PS visibility map for descending geometry (12m resolution) for the whole region of interest and representation of a close look at the Bajeda basin to allow for a satellite inter-comparison.
Results: PSI Visibility Maps

A priori PS visibility map for ascending geometry (30m resolution) for the whole region of interest and representation of a close look at the Bajeda basin to allow for a satellite inter-comparison.

A priori PS visibility map for ascending geometry (12m resolution) for the whole region of interest and representation of a close look at the Bajeda basin to allow for a satellite inter-comparison.
A priori PS density map for descending geometry for the whole region of interest and representation of a close look at the Bajeda basin to allow for a satellite inter-comparison.

A priori PS density map for ascending geometry for the whole region of interest and representation of a close look at the Bajeda basin to allow for a satellite inter-comparison.
Final SBAS deformation map for track 205 in the time interval 2003-2010 expressed in VSLOPE (oriented arrows).
Final PSI deformation map for track 205 in the time interval 2003-2010 expressed in VSLOPE (oriented arrows).
Different types of gravitational mass movements are widespread in the mountain region of Nepal. Additionally, the middle altitudes areas show an uncommon high population density and large parts of the slopes are used for agriculture. Therefore, the risk to get affected by landslides is one of the highest in the world.

The Geological Survey of Austria (GBA) and the Tribhuvan University Kathmandu contribute as partners in the project Landslide-EVO (2017-2021) with the task to characterize and monitor two active Deep Seated Gravitational Slop Deformation (DSGSDs) at Sunkuda and Bajura (Bajedi, Fig. bottom). Both sites are located in the Karnali river basin, Lower Himalaya of Far Western Nepal. The DSGSDs there are accompanied by secondary processes like shallow landslides, debris flows and rock falls.
A first investigation around the area of the Bajeda catchment and Budiganga river basin was performed in terms of Deep Seated Gravitational Slope Deformation (DSGSD) phenomena recognition based only on geomorphologic interpretation. A DSGSD database was created and from Budiganga river basin in the figure bottom left two types of mass movement were represented:

- In orange the optical images interpreted active shallow landslides
- In red the DSGSD interpreted via geomorphology evidences.

When these polygons are overlaid to the ascending SBAS data, a first impression of how to create a landslide activity map can be given (bottom right).
Conclusion and Recommendations

Multi-Temporal DInSAR technique as developed in Austria is successfully applied to Far Western Nepal.

Semi-automatic process flow in GIS environment yields a priori PS visibility and density maps on basis of existing or free available DEM (ASTER 30m, TerraSAR, ALOS world 3D).

A priori visibility map supports accurate positioning of InSAR-corner reflectors for punctual InSAR-monitoring (Bajedi).

Higher resolution (at least 30m) landcover map for Far Western Nepal would improve PSI-density information.

Current palette of applied free data resources and services/software allows low cost implementation of DInSAR monitoring (see references).

Nepal partners and institutions can realize such monitoring on regional and catchment scale throughout the state and beyond runtime of the project supporting effective risk management, early and selective and reaction to landslide risk.

The Geological Survey of Austria is ready to support and transfer developed expertise to Nepal partners (e.g.: Workshop ‘Landslide Monitoring Systems and Methods’, November 2019, Vienna).
Thank is expressed to the partners of Tribhuvan University, Practical Action Consulting and SOHAM for providing most actual data and on site logistics also to the citizens of Bajedi and Sunkuda community for local support, the Austrian and Nepal Ministry for Foreign Affairs, the Austrian Embassy New Delhi, as well as the Austrian Honorary Consulate Kathmandu for logistics and administrative support concerning equipment shipping.
THANKS FOR YOUR ATTENTION
Digital elevation models
Three different digital models available at the time were used for the project.
a 30 m ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) Global Digital Elevation Model (ASTER DEM) released in 2011 by the Ministry of Economy, Trade, and Industry (METI) of Japan and the NASA.
12 m DEM TanDEM-X (http://sss.terrasar-x.dlr.de/)
Nasa SRTM 90m resolution DEM for the interferometric process (http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1)

Geographical
Airports (https://data.humdata.org/organization/ocha-nepal)
Disaster data (https://data.humdata.org/organization/ocha-nepal)
geography at 5 sub national level (https://data.humdata.org/organization/ocha-nepal)
Population (http://www.diva-gis.org/gdata)

Land cover
Globcover global land cover map (http://due.esrin.esa.int/page_globcover.php)
OpenStreetMap layers including rivers, lakes, point of interests, village and cities buildings (http://download.geofabrik.de/asia/nepal.html)

Geomorphology
Soil map from Soter Project (http://data.isric.org/geonetwork/srv/eng/catalog.search#/metadata/896e61f8-811a-40f9-a859-ee3b6b069733)
Physiographic region (partner data)
Wathershed and Rivers extraction (DEM derived via GRASS GIS)
Geomorphon (DEM derived via GRASS GIS)
Skyview factor (DEM derived via GRASS GIS)
Contour lines and Hillshades (DEM derived via ArcGIS)

Remote sensing
ESA ENVIISAT SLC data 31 descending and 9 ascending track number 55 and 7 ascending track number 327 (in table 1,2 and 3 the major characteristics of the image are summarized).
(SNAP http://step.esa.int/main/toolboxes/snap/) is already tested and used at the Geological Survey of Austria. Data is generally freely available from servers (https://scihub.copernicus.eu/dhus/#/home) or provided after short project application (https://geohazards-tep.eo.esa.int; OSEO - open Science Earth Observation- call from ESA https://earth.esa.int/web/guest/home).
Data resources, processing platforms and applied software

Geology and tectonics
Geology of Nepal, Active Faults scale 1: 1000.000 (Dithal, 2015).
Geology of Nepal (from partners).

2.7 Climatology and mereology
Meteorological data from world clim with 19 variables and 3 monthly averaged products for precipitation, wind and evapotranspiration at 1Km spatial resolution. (http://worldclim.org/version2).
Meteorological data EMCF for the tropospheric correction (European Centre for Medium-Range Weather Forecasts) which works well with the TRAIN software.
Weather station for precipitation (Meteo office Nepal).

GIS and remote sensing softwares
ArcGIS (https://www.arcgis.com/features/index.html): proprietary software which reads the maps from the publication “Geology of Nepal”, used for geoprocessing of vector files in order to calculate with “field calculator” V_{SLOPE} and used for the layout and publication of maps.
GRASS GIS (https://grass.osgeo.org/): useful for semi-automatic extraction of river, watershed and with external plug in to calculate the geomorphon layer (useful for the identification of possible areas susceptible to shallow landslides) literature and the skyview factor (useful for the delineation and identification of deep seated slope deformation).
QGIS (https://www.qgis.org/en/site/): alternative open source version of ArcGIS, and enriched with component from SAGA (useful software for file conversion and DEM manipulation), Orfeo (very powerful remote sensing software), together with several interesting Python plug-in such as:
“PS time series viewer”, automatic plotter;
“tile map scale level” open street map overlay;
“GEarthview” direct publication on google-earth of QGIS layout;
“semi-automatic classification plug-in” (for optical data classification such as Sentinel-2, TERRA-Aster and Landsat);
“vector field render”;
“magnetic declination” used for the orientation of the corner reflectors in the field.
Google Earth Pro (https://www.google.com/intl/en/earth/): free software for the visualization in 2D and 3D of several generation optic images (proprietary) and the creation/overlay of raster/vector layers created in GIS and remote sensing software.
SNAP (http://step.esa.int/main/toolboxes/snap/): the ESA reference3 software for Sentinel-1, Setinel-2 and ENVISAT, ERS processing.
Adore-DORIS and DORIS (http://doris.tudelft.nl/): where the initial step of the interferometric chain start (it is suitable for ERS 1/2, Envisat, Terra-SAR-X, Alos, Radarsat, CosmoSkyMed).
StaMPS (https://homepages.see.leeds.ac.uk/~earahoo/stamps/): it is the most common open source software for PSI and SBAS time series analysis and work well in combination with DORIS, SNAPHU (unwrapping software), TRAIN (tropospheric correction software) and MATLAB.

MATLAB: proprietary software where the final steps of the stamps time-series processing.

G-POD (https://gpod.eo.esa.int/): analysis of ENVISAT performed but did not succeeded due to the lack of large archive of images.

Geohazard-TEP (https://geohazards-tep.eo.esa.int/#1): could be used in the future for the analysis of Sentinel-1 images.

GACOS (http://ceg-research.ncl.ac.uk/v2/gacos/): Generic Atmospheric Correction Online service for InSar could be used in the future couple with the IISC (http://comet.nerc.ac.uk/COMET-LICS-portal/)portal for analysis of DInSAR.

References and relevant literature

Kampes B.M., (2006): RADAR INTERFEROMETRY - Persistent Scatterer Technique, German Aerospace Center by (DLR), Germany.

References and relevant literature

