Short-duration extreme convective precipitation in the southeastern Alpine forelands of Austria under climate warming

Md Humayain Kabir, Gottfried Kirchengast

Wegener Center for Climate and Global Change (WEGC), University of Graz, Austria

Presentation for EGU General Assembly 2020
Sharing Geoscience Online Session No. NH1.6/AS1.5/HS13.10
Mon 4th May 2020, 8:30-10:15h, Pres. No. D1944
Figure 1. Conceptual diagram of the observed relationship between temperature and extreme rainfall intensity as understood from empirical studies. (a) The basic behavior of higher rainfall intensity percentiles (solid black line) with CC scaling (long-dashed black lines) below about 12°C, super-CC scaling (dot-dashed black lines) between 12°C and 24°C, and negative scaling for temperatures above 24°C. (b) Typical pattern of observed decrease in relative humidity for higher temperatures [Hardwick-Jones et al., 2010; Berg and Haerter, 2013]. (c) The hypothesis [Haerter and Berg, 2009] of the super-CC scaling being caused by a shift from a stratiform (red) to a convective (blue) weather regime. The inset in Figure 1c shows the relative contribution of convective rainfall to total rainfall.

(Westra et al., RG, 2014)
Fig: Synthesis of regional trends in sub-daily extreme rainfall. Increasing trends are showing with plus sign and decreasing trends with minus sign (Westra et al., RG, 2014)
Background of the study – strong warming in and around southeastern alpine region

[Kabas-Kirchengast, WEGC, 2019]
Background of the study – focus on study area EAR/RTR/SES/FBR

(Schroeer, PhD thesis, 2018)
Weather Typing

Weather type frequency (black bars, rows 2 and 4) and associated extreme precipitation (98th percentile, horizontal bars) for peak intensity (red), daily sum (yellow), and average wet spell duration (blue). Shadings show 90% confidence intervals. Full lines are identical in all panels and show the overall monthly climatological percentile values (full lines, dotted lines mark 90% confidence intervals).

(Schroeer and Tye, JFRM, 2019)
Southeastern alpine forelands of Austria: Recent climate research results

Shorter-lasting and local rainstorms become especially violent with increasing temperature.

Around 9-14% increase in heavy rainfall intensity per °C in MJJAS (extended summer) instead of only around 4% for longer and more flat rainfalls.

(Kabas-Kirchengast, WEGC, 2019)

Region east

≤ 2h wet hours

Temperature 1971-2019: Summer (JJA)

Scaling Factor [% °C⁻¹]

Summer convective weather types
- p98 MPI (10 min)
- p98 MHI (hour)
- p98 DPS (day)

All other weather types
- p98 MPI (10 min)
- p98 MHI (hour)
- p98 DPS (day)

(Schroeer and Kirchengast, CDYN, 2018)

[Schroeer and Kirchengast, CDYN, 2018]

FWF-DK Climate Change | UNIVERSITY OF GRAZ
References


