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Within this work, we aim at investigating the role of coupled hydro-mechanica
processes to trigger pulsating localised fluid expulsions In the subsurface.

Suoyant fluids trapped within the pore-space of rocks tend to migrate towards the
surface along pre-existent or dynamically created escape paths.

Geophysical monitoring of various two-phase systems exhibit pulsating signals,
interpreted as the systems’ response to ongoing localised tluid migration and
expulsion.
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VWe recently proposed nydro-mechanical coupling and time-dependent creep to
be responsible of spontaneous flow localisation within the subsurface |1,2].

VWe showed that a pocket of buoyant fluid located beneath saturated porous rocks

could lead to the formation of fluid escape pipes as Imaged using seismic
methods.

1] http://www.nature.com/articles/s41598-018-29485-5

2] https://doi.org/10.1093/4ji/agz239
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The fluid vertically escape by locally expanding the pores due to buoyancy. Once
mMigrated one step upwards, pore would close again due to confining pressure
0eing larger than pore pressure.

The rate of decompaction and compaction of the viscous and porous matrix Is
given by the bulk viscosity.

3] https://dol.org/10.1002/2014JB011258



https://doi.org/10.1002/2014JB011258
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C solitary wave (or blob) of elevated

N rates of the porous matrix where

We recently showed that the bulk viscosity of saturated rocks (and their

permeabllity) Is sensitive to the effective pressure - the difference between the pore
fluid pressure and the confining stress (total pressure) - as depicted in next [4,9].

4] https://doi.org/10.1016/.eqypro.201 7.03.1455

5] Yarushina, V. M., Makhnenko, R. Y., Rass, L., and Podladchikov, Y. Y. Viscous behavior of clay-rich

caprock affects its sealing integrity. Submitted to International Journal of Greenhouse Gas Control,


https://doi.org/10.1016/j.egypro.2017.03.1455
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Can the random porosity distribution influence the fluid flow response In a two-
phase system 7

VWhat does the flow response tells about the interal structure of the porous
media

The next picture shows 3 different porosity fields with distinct correlation lengtns.
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VWe know that seismic (p-) waves are sensitive to the porosity (here slowness)

distribution [6].
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mpact on seismic p-waves
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etting the same three different samples with various initial porosity distribution

compact under gravity may as well produce different signal when recording the
iNntegrated fluid fluxes.

VWe realised 3 different high-resolution forward simulation taking the previously

depicted 3 different porosity distributions as initial conditions. The next movie
provides insight into a forward simulation.
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Our preliminary results suggest a different response of the recorder integrated
vertical fluid flux as function of the initial porosity distribution.

Sample generating most scattering of seismic waves also trigger largest peak
values of fluid fluxes occurring at lowest “frequency’.

Sample generating less scattering of seismic waves also trigger slowest peak
values of fluid fluxes but occuring at higher “frequency’”.

The "irst arrival” time-span is also function of the initial porosity distribution.
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Our preliminary results suggest a specific response of the two-phase system as
function of the porosity distribution within a given system.

The frequency analysis unvelled that the frequency distribution for all samples
follows a log-normal trend. This would be consistent with previous observations of

Nydrological systems.

VWe need to further investigate the impact of initial fluid content and tfinalise the
frequency analysis.
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