USING GIS AND REMOTE SENSING TECHNIQUES FOR DELINEATION OF GROUNDWATER POTENTIAL ZONES – A CASE STUDY OF THE TITEL MUNICIPALITY, SERBIA

Mirjana Radulović¹, Tijana Đorđević², Nastasija Grujić³, Branislav Pejak¹, Sanja Brdar¹, Stevan Savić³, and Dragoslav Pavić²

¹BioSense Institute, University of Novi Sad, Novi Sad, Serbia (mirjana.radulovic@biosense.rs, n.grujic@biosense.rs, branislav.pejak@biosense.rs, sanja.brdar@biosense.rs)
²Faculty of Sciences, Department of Geography, Tourism and Hotel Management, University of Novi Sad, Novi Sad, Serbia (tijanadj@dgt.uns.ac.rs, stevan.savic@dgt.uns.ac.rs, dragoslav.pavic@dgt.uns.ac.rs)

1 Introduction

Groundwater is the largest available freshwater resource on the Earth which serves as an essential source for domestic purposes, industrial and agricultural uses [1,2]. As a result of a drastic increase of population on the planet as well as the global impact of climate change, repetition of drought conditions and scarcity of rainfall, demand for groundwater resources is intensely increasing in the past decades [3]. Serbia is relatively rich in groundwater reserves situated in different types of aquifers, yet that reservoirs have not been significantly investigated [4]. New technologies such as remote sensing and geographic information systems (GIS) have an essential role in evaluating groundwater potential makes it easier, more accurate, cheaper, and faster than using traditional techniques.

2 Research area

Titel Municipality is located in the northern part of Serbia, in Vojvodina Province. Geographically it is located at the confluence of the two rivers - Danube and Tisza river. This area is also characteristic because of three relief units: alluvial plains, river terrace, and loss plateau.

3 Methodology

The methodology proposed in this research to identify and delineate groundwater potential zones using GIS, remote sensing and AHP techniques [5] is illustrated in figure below.

- **GWPI (Groundwater Potential Index)**: A weighted index that combines different thematic layers using AHP technique

 \[GWPI = \frac{1}{n} \sum_{i=1}^{n} W_i \times X_i \]

4 Results and Discussion

The groundwater potential zone map of Titel Municipality has been generated through the integration of six thematic maps (geology, land use/cover, soil, geomorphology, drainage density, and slope). Each thematic layer has been given weight according to their strength. Based on GWPI, values of groundwater potential zones were characterized and classified into five classes.

These techniques indicated that very good and good groundwater potential zones are predominantly located in Danube and Tisza alluvial plain and the lower river terrace, while poor and very poor zones are identified at the loess plateau and in the artificial areas. The main reason for this is the proximity to the rivers which has a significant influence on groundwater recharging. Also, this is the lowest part of the terrain which indicates that there is a main collector for groundwater which flows from higher-relief units. The high potential in this part of the study area is also influenced by good water-holding capacity of the fluvial and geological sediments.

References