

Ecological trends in wood production dynamics of coniferous forest

CYRILLE RATHGEBER 1 & GLOBOXYLO CONSORTIUM 2

¹ cyrille_rathgeber@inrae.fr — SILVA, INRAE Grand Est — Nancy, France

² See list of members in acknowledgements

1. Introduction

2. MATERIAL & METHOD

- GloboXylo Dataset presentation
- Elaborated data computation
- Basic model of wood production dynamics

3. RESULTS

- Biogeographic patterns
- Dynamics vs. phenology of growth
- Biome and species strategies
- Influence of environmental factors

4. DISCUSSION & PERSPECTIVES

EARTH GREENING AND GLOBAL CHANGE?

Recent global change induced an increase in:

- Tree growth
- Forest ecosystem NPP
- Terrestrial biosphere carbon up-take
- Forests are one of the largest C sink on earth

These changes are attributed to rising temperatures by

- Remote sensing
- Direct observations
- Eco-physiological models

Scientific Questions:

- Duration vs. rate of growth?
- Effect of climatic factors

Hans Pretzsch¹, Peter Biber¹, Gerhard Schütze¹, Enno Uhl^{1,2} & Thomas Rötzer¹

Table 1 | Change of the characteristics of 75-year-old forest stands 2000 in relation to 1960.

Forest stand attribute	Change from 1960-2000 in %		% Ramakrishna R. Nemani, 1*† Charles D. Ke
	N. spruce	E. beech	Hirofumi Hashimoto, 1,3 William M. Jolly, 1 Steph Compton J. Tucker, 4 Ranga B. Myneni, 5 Steven N
Dominant tree height, ho	+6	+9	and the state of t
Mean tree diameter, dq	+9	+14	
Mean tree volume, \bar{v}	+34	+ 20	
Stand volume growth, PAIV	+10	+ 30	
Standing volume stock, V	+6	+7	
Tree number, N	– 17	– 21	nature
Mortality rate, MORT	NS	– 17	COMMUNICATIONS
Mean tree volume			
increment iv	+ 32	+ 77	ARTICLE
Shift of $\overline{iv} - \overline{v}$ -allometry	+ 25		Received 7 Mar 2014 Accepted 12 Aug 2014 Published 12 Sep 2014 SOIL 10.1038/access5657 OPEN
Shift of $N - \bar{v}$ -allometry	NS		Forest stand growth dynamics in Central Europe have accelerated since 1870
			nave accelerated since 1070

E. beech, European beech; N. spruce, Norway spruce; PAIV, periodic annual increment of

Comparative changes between 2000 and 1960 determined from our fitted linear mixed models (LMMs). We only report changes based on significant calendar year effects; bold numbers: P < 0.05 (LMM); normal number: P < 0.10 (LMM). Sample sizes for Norway spruce: n = 157 (ho, dq, \bar{v} , V, N, N – \bar{v} -allometry), n = 141 (PAIV, \bar{iv} , \bar{iv} – \bar{v} -allometry), n = 90 (MORT). Sample sizes for European beech: n=225 (ho, dq, \bar{v} , V, N, $N-\bar{v}$ -allometry), n=217 (PAIV, \bar{iv} , $\bar{iv}-\bar{v}$ -allometry), n = 119 (MORT). The crucial calendar year effects for a given forest stand attribute might result from one or two significant parameter estimates.

Climate-Driven Increases in **Global Terrestrial Net Primary** Production from 1982 to 1999

Ramakrishna R. Nemani, 1*† Charles D. Keeling, 2 Hirofumi Hashimoto, 1,3 William M. Jolly, 1 Stephen C. Piper, 2 Compton J. Tucker, 4 Ranga B. Myneni, 5 Steven W. Running 1

GLOBOXYLO DATABASE PRESENTATION

Wood formation monitoring and meteorological data

- > 50 study sites
- 3 continents
 - America
 - Europe
 - Asia
- 4 biomes
 - Boreal
 - Temperate
 - Mediterranean
 - Arid
- 15 conifer species
- 700 trees in total

TRAINING DATASET April 2015

COST is supported by the EU Framework Programme Horizon 2020

SAMPLING DESIGN AND ANATOMICAL

Wood sampling

- 3-15 trees / sites
- ~ Weekly microcores

Developing xylem observations

- Preparation of anatomical sections
- Observation under light microscope
- Classification and counting of differentiating tracheid along radial files:

Year 2008

Fir

Pine

M,J,J,A,S,O

INRAO

2008

Early-

Spruce

RANGE OF VARIATION OF THE CLIMATIC

Huge range of climatic conditions

- Mean Annual Temperature:
 - From -8 °C in Siberia
 - To 18 °C in Spain
- Total annual precipitation:
 - From 30 cm in Tibet and Spain
 - To 180 cm in France and Slovenia

JLTS

RANGE OF VARIATION OF THE VARIABLES OF INTEREST

Four bioclimatic zones

- Mediterranean forests (M)
- Temperate forests (T)
- Boreal forests (B)
- Arid forests (A)

Three elevation zones

- Low elevation (I)
- Medium elevation (m)
- High elevation (h)
- RCN: from 3 to 150 cells
- r90: from 0.1 to 1 cell/day
- dE: from 1 to 10 months
- bE: from Feb. to Jun.
- cE: from Jul. to Dec.

LENGTH OF THE GROWING SEASON

Clear biogeographic patterns

- Latitude
- Elevation
- Summer solstice
- Upper limit at 40 days
- No lower limit

Relationships between onset and cessation of cambial activity

- Similar range of variations
- Similar contribution to dE
- Similar importance

RESULTS

VALIDATION OF THE BASIC PHYSICAL MODEL

- The basic physical model (RCN = dEx r90)
 - Explains 80 % of the variance
 - Exhibits no significant bias
 - Works also for Mediterranean and arid forests!
- The model can be used for further investigations...

CONTRIBUTION OF DURATION AND RATE TO TOTAL NUMBER OF XYLEM CELLS PRODUCED

DED VEAD Sensitivity analysis

- r_mG varies, while dE is kept constant
 - RCN: 18 → 59 (7 41 cells)
- dE varies, while r_mG is kept constant
 - RCN: 22 → 54 (**7** 32 cells)
- Resulting contribution to total variation:
 - $r_mG: 55\%$
 - dE: 45%

ECOLOGICAL TRENDS BETWEEN BIOMES

Boreal forests

- short growing seasons
- high growth rates
- r90 contributes to 65 %, dE to 35 %

Temperate forests

- Medium growing season
- Variable growth rates
- r90 contributes to 60 %, dE to 40 %

Mediterranean forests

- long growing seasons
- low growth rates
- r90 contributes to 55 %, dE to 45 %

Standardised comparison (for 35 cells)

- Boreal: 70 days at 0.5 cells/day
- Temperate: 100 days at 0.4 cells/day
- Mediterranean: 130 days at 0.3 cells/day

SPECIES SPECIFIC STRATEGIES?

Scots pine across bioclimatic zones

- Boreal (B), Temperate (T), Mediterranean (M)
- 13 sites
- 168 trees
- > Same as global trends:
 - RCN --->
 - R 90 ↓ from B to M
 - dE↑from B to M

Norway spruce across altitudinal zones

- Low (I), Medium (m), High (h)
- 17 sites
- 246 trees
- > Same as general patterns
 - RCN --->
 - R 90 ↑ from B to M
 - dE ↓ from B to M

RESULTS

EFFECT OF TEMPERATURES ON WOOD FORMATION

DYNAMICS

Effect of Mean Annual Temperatures on wood formation dynamics

- Ring Cell Number (RCN)
 - No effect
- Mean cell production rate (r90)
 - > Small effect
- Timings of enlargement (bE, cE, dE)
 - Strong effect
- Extend former results on cambium phenology
 - Linear trend
 - Mediterranean area

EFFECT OF WATER AVAILABILITY ON WOOD

FORMATION DYNAMICS

Effect of total Growing Season Precipitations (GPS) on wood formation dynamics

- Ring Cell Number (RCN)
 - No effect
- Mean cell production rate (r90)
 - Moderate effect
- Timings of enlargement (bE, cE, dE)
 - light effect
- New result showing the influence of water stress on cell production at global scale

DISCUSSION AND PERSPECTIVES

Global trends in wood production

- Contribution of **growth rate** > growing season duration
- **Wood formation phenology** is mainly driven by temperature at global scale + species specific effect at local scale (global: 80 / local: 20)
- **Wood formation dynamics** is under the control water balance + local conditions (global: 20 / local: 80)

Impact of global change

- Extension of the growing season even in Mediterranean zone...
- ...But strong modulation at site level...
- ...Very uncertain outcomes!

Future challenges

 Deciphering the effect of site conditions and environmental factors on growth rate

Bryukhanova Marina, Camarero Jesus Julio, Campelo Filipe, Cocozza Claudia, Čufar Katarina, Cuny Henri, De Luis Martin, Deslauriers Annie, Fonti Patrick, Frank David, Giovannelli Alessio, Gričar Jožica, Gruber Andreas, Gryc Vladimír, Güney Aylin, Huang Jian-Guo, Ivanova Albena, Jyske Tuula, King Gregory, Krause Cornelia, Kirdyanov Alexander, Li Xiaoxia, Liang Eryuan, Mäkinen Harri, Martinez del Castillo Edurne, Morin Hubert, Nabais Cristina, Nöjd Pekka, Oberhuber Walter, Prislan Peter, Ren Ping, Saderi Masoumeh, Rossi Sergio, Swidrak Irene, Treml Vaclav, Vavrčík Hanuš, Vieira Joana, Ziaco Emanuelle, and many more...

