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Background: The leading climate modes of variability in Pacific Ocean

Spatial Patterns
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(c) SST SPDO South Pacific explained varance 22.98%

Definitions:

1. El Nino-Southern Oscillation (ENSO): NINO3, NINO4, NINO3.4, NINO1+2, etc.
Area averaged sea surface temperature in some boxes in the Tropical Pacific.
2. Pacific Decadal Oscillation (PDO): The first EOF mode of Pacific sea surface
temperature poleward of 20°N (Mantua et al. 1997).

3. South Pacific Decadal Oscillation (SPDO): The first EOF mode of Pacific sea
surface temperature poleward of 20°S (Chen and Wallace 2015).

4. Interdecadal Pacific Oscillation (IPO): The third EOF mode of the low-
frequency global sea surface temperature (Power et al. 1999).
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fluctuate in the order of decades.

meridionally broader than ENSO over equatorial Pacific.

Temporal Variability
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Spatial patterns: The PDO and SPDO patterns look very much like the ENSO pattern, but

Temporal variability: ENSO fluctuates in the order of years. The PDO and SPDO



Background: The region of interest— South Pacific

Summary View
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The PDO in the North Pacific

It has been recognised that the PDO is not simply a single physical mode
but instead largely represents the combination of different processes
operating on different time scales. These multiscale processes include
white noise atmospheric forcing, ENSO teleconnections and oceanic
processes (Newman et al. 2016).

The SPDO in the South Pacific

Hypothesis: The SPDO also integrates multiple dynamics of the
atmospheric forcing, ENSO teleconnections and oceanic processes in
the Southern Hemisphere.



The first-order of autoregressive (AR1) model:

(c) Pacific South-American pattern (signed)
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The PSA1 is the key atmospheric driver for the SPDO over South Pacific (Lou et al. 2019).

Reddening



[LIM is the multivariate generalization of univariate AR1 model. ]

Stochastic forcing term (fast processes)

4
dx
Time-continuous equation: — =|Lx |+ E
dt
1
Linear deterministic feedback term (slow processes)
i

Time-discrete equation: Xt+1 = GTXt + Edt

Green Function: GT = eXp(LT) = (Xt+tXtT><XtXE‘>—1

L T

t-lag covariance matrix of x  Inverse matrix of 0-lag covariance of x



Whether a LIM works or not depends on how we define the state vector x

~

= Madden-Julian Oscillation (Cavanaugh et al. 2014)

= Atlantic Multidecadal Variability (Zanna 2012)

* North Pacific Decadal Variability (Alexander et al. 2008)
= ENSO (Penland and Sardeshmukh 1995)

» Tropical-North Pacific coupled system (Newman 2007)
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» Due to nonlinearity, instability or non-stationarity of the true processes and imperfections of observational data, it is very

likely to run into singular issues (data matrix X is not invertible) if the observational data are used directly.

» In order to avoid singular issues, we need to reduce the freedom of the data first by applying the Empirical Orthogonal

Function (EOF) analysis. In my study, 10 leading PCs have been used.



A schematic shows how
o the SST variability in the
—f;?:nha“'”mc'“g extratropical South Pacific
can be considered as the
superposition of
atmospheric variability
Noise perturbation and subsurface processes.
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The dynamics of the SST variability have been separated
into at least two distinct time scales with one operating
on interannual and one on (inter-)decadal.

The mode associated with the interannual variability
dominates its signals narrowly in the equatorial Pacific
and remains very similar to the ENSO variability. The
corresponding POP time series is related to the simulated
TP-PC1 (i.e. ENSO) with a correlation of 0.67.

The mode associated with the (inter-)decadal variability
has a meridionally broader structure compared to its
interannual counterpart. The corresponding time series
is consistent with the so-called ‘climate regime shift’ in
the mid- to late 1970s and late 1990s.

The interaction between the interannual ENSO mode and
the (inter-)decadal SPDO mode plays a large part in giving
rise to the overall SPDO variability.




(a) POP1 Least damped (stationary) mode
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1. Having A considerably longer damping time scale: 102 months;
B 2. Displaying the greatest persistence;
5°S — 3. Reflecting the subsurface signal.
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(e) POP2 time series Real part

1. Damping time scale: 20 months and oscillatory period 179 months;
2. Reflecting the (inter)decadal SPDO variability.
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(f) POP3 time series

1. Damping time scale: 8 months;
2. Reflecting the (inter)annual ENSO variability.
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in the South Pacific Ocean;
The dynamics of the entire SPDO variability can be decomposed into

different processes operating on different time scales.
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Propagating mode
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Propagating mode
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The damping time scales of the most damped

modes in each experiment were 2.8, 2.3, and
2.4 months respectively with corresponding
oscillatory periods of 4.0, 2.2, and 2.4 years.
Those modes with shortest damping time
scales reflect the least predictable noise
components in the system.
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= The noise modes are propagating;

= Reflecting atmospheric
eastward-propagating Rossby wave train
variability, which imprints its signal onto the
surface ocean.




LIM: Xpe = GoX, + Edt

LIM pI‘EdiCtiOll: Xirr = G X = By including subsurface processes in the South
Pacific, the prediction skill of both the SPDO
and ENSO is increased.
(a) SPDO (b) ENSO
B PR— ) TR — = SPDO prediction: replacing higher-order SST
— A PCs with subsurface processes in the LIM does
not improve the prediction skill of the SPDO
for shorter leads (i.e., each experiment has
very similar prediction skill for leads up to 4
months). For longer leads (4 months), the
subsurface variability starts adding more
predictability to the SPDO.
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= ENSO prediction: the ENSO predictions have

4 6 8 4 6 8
Lead time [months] Lead time [months] been improved throughout all forecast lead
times from 0—12 months where subsurface
The correlation skill between the observed/simulated SPDO and processes in the South Pacific are

ENSO and the corresponding predicted time series. incorporated.




(b) Correlation Skill of ENSO
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The ENSO prediction skill is relatively low (~3 months)
when initiated in the boreal spring (i.e., MAM) primarily

due to the boreal spring predictability barrier when

ENSO often emerges or decays.

The SPDO has longer predictability relative to ENSO.
However, the SPDO exhibits shorter predictability (~3-4
months) when the predictions are initiated in austral
winter (JAS), which might be due to the delayed

influences from tropical ENSO variability.



(c) Correlation Skill of ENSO
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The ENSO prediction skill has been improved throughout all the
seasons when subsurface processes in the South Pacific are

included. Moreover, ENSO correlation skill is significantly higher
for predictions starting after June, with skill of up to ~¥9 month in

austral winter (i.e., JJA) when the subsurface contribution is
incorporated.

In general, the SPDO has longer predictability relative to ENSO,
especially when the subsurface processes are considered.

Forecast skill of the LIM is comparable to the GCMs. However, the
reduced-order LIM is much cheaper. These LIM forecasts are

competitive with that of comprehensive nonlinear GCMs.



= The Pacific-South American (PSA) pattern is the key atmospheric driver of the South Pacific decadal Oscillation
(SPDO);

» The least damped modes (signal modes) resemble El Nifio—Southern Oscillation (ENSO) and the SPDO.

* The most damped modes (noise modes) reflect atmospheric eastward-propagating Rossby wave train variability.

= Although the oscillatory periods of ENSO and SPDO are distinct, they have very close damping time scales,
indicating that the predictive skill of the surface ENSO and SPDO is comparable.

= The ENSO spring predictability barrier is apparent in linear inverse model (LIM) predictions initialized in March—May
(MAM) but displays a significant correlation skill of up to ~3 months.

» For the SPDO, the predictability barrier tends to appear in June-September (JAS), indicating remote but delayed
influences from the tropics.

= Subsurface processes in the South Pacific Ocean are the main source of decadal variability and further that by
characterizing the upper ocean temperature contribution in the LIM, the seasonal predictability of both ENSO and

the SPDO variability is increased.



ARC CENTRE OF EXCELLENCE FOR

% UNIVERSITY of CLIMATE SYSTEM SCIENCE

TASMANIA IVIAS QUANnTVE

INSTITUTE FOR MARINE AND

ANTARCTIC STUDIES M A R 1 N E
SCIENCE

A Linear Inverse Model of Tropical and South Pacific Seasonal Predictability
EGU Assembly 2020

CL3.2: Predictions of climate from seasonal to (multi)decadal timescales (S2D) and their applications

THANK YOU! STAY SAFE AND HEALTHY!

1 JUNE 2020 LOU ET AL. 4537 ‘

Presenter: Jiale Lou 2 (PhD Candidate)

Supervisors: Prof. Neil J. Holbrook 13

A Linear Inverse Model of Tropical and South Pacific Seasonal Predictability Prof Terence J 0' Kane 4

JALE Lou

Institute for Marine and Amtarctic Studies, University of Tasmania, and ARC Centre of Excellence for Climate System Institute for Marine and Antarctic StUdleS' UmverSIty of Tasmama' HObart' TAS' Australia

Science, University of Tasmania, Hobart, Tasmania, Australia . . . . . .
2ARC Centre of Excellence for Climate System Science, University of Tasmania, Hobart, TAS, Australia
TERENCE J. O’KANE 3ARC Centre of Excellence for Climate Extremes, University of Tasmania, Hobart, TAS, Australia
CEIRO Oceans and A mn_:-_t_.-:-Jr-.'J'-.', Habari, Tasmania, Ausiralia

4CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
NEIL J. HOLBROOK ‘

Institwte for Marine and Antarctic Studies, ity af Tasrmania, and ARC Centre of Excellence for Climate Extremes,
Umiversity of Tasmania, Hobart, Tasmania, Australia

Date: 06/05/2020

[Manuscript received 19 July 2019, in final form 26 February 2020)




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

