Discriminating biomass and soil water content with proximal gamma-ray spectroscopy

Fabio Mantovani, Matteo Albéri, Carlo Bottardi, Enrico Chiarelli, Kassandra Giulia Cristina Raptis, Andrea Serafini, and Virginia Strati
Terrestrial radioactivity: the potassium

Terrestrial radioactivity is due to naturally occurring radioactive elements with half-lives comparable to the Earth’s age. Among them, potassium and some radioisotopes in the uranium and thorium decay chains emit γ-rays having energy of the order of MeV and can be easily detected via γ-rays spectroscopy.

<table>
<thead>
<tr>
<th>Element</th>
<th>Radioisotope</th>
<th>Isotopic abundance</th>
<th>Half life</th>
<th>Typical abundance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potassium</td>
<td>40K</td>
<td>0.012%</td>
<td>1.3×10^9 years</td>
<td>0.02 g/g</td>
</tr>
<tr>
<td>Uranium</td>
<td>238U</td>
<td>99.3 %</td>
<td>4.5×10^9 years</td>
<td>3 µg/g</td>
</tr>
<tr>
<td>Thorium</td>
<td>232Th</td>
<td>100 %</td>
<td>14.1×10^9 years</td>
<td>10 µg/g</td>
</tr>
</tbody>
</table>

- K makes up about 2.6% of the weight of the Earth’s crust and is the 7th most abundant element in the crust.
- K is one of the main building blocks of the most widespread minerals forming rocks and soils.
Different γ-rays measurements techniques

... in laboratory

~ 0.1 m

HPGe

... in situ

~ 10 m

NaI

... airborne

~ 100 m

NaI
GOAL: study the soil water content measuring the attenuation effects on gamma rays emitted by ^{40}K during a tomato crop season.
Cumulative contribution of ground radioactivity in percentage as function of the source radius reaches ~95% at ~25 m of radius.

In a typical soil ~95% of the gamma radiation is emitted from the top 25 cm of the soil.
The rationale: a simple idea

- The water mass attenuation coefficient is significantly higher than those of minerals
- 40K is everywhere and **homogenously** distributed in agricultural soils

The soil water content $w \left(\frac{M_{\text{water}}}{M_{\text{soil}}} \right)$ is **inversely proportional** to the signal $S(K)$ produced by the 40K decay measured by the gamma spectrometer:

$$w(t) = \frac{A}{S_K(t)} - B$$

Crucial information for irrigation scheduling and efficient use of water
[4th April – 2nd November 2017]

- **15 minutes** acquired spectrum
- Total counts $\sim 180 \times 10^3$
- Net counts in 40K window $\sim 10^4$
- Typical statistical uncertainty $\sim 1.3\%$ for 15 min acquisition
- We acquired 20502 spectra in 7 months (260 GB)
- 97.5 % of duty cycle
Calibration procedure: gravimetric measurements

w_{CAL} : mean value obtained from 48 samples in the 0 – 30 cm depth range at 16 planar sampling points homogeneously distributed within 15 m from the detector.

CR_{CAL} : count rate in ^{40}K window.

\[
wt\left[\frac{kg}{kg}\right] = \frac{CR_{\text{CAL}}[cps]}{CR_i[cps]} \left(0.899 + w_{\text{CAL}}\right) - 0.899
\]

$M_{\text{Water}} = M_{\text{Wet}} - M_{\text{Dry}}$

BARE SOIL CONDITION
From the count rates to the water content in soil

The presence of growing biomass introduces an extra attenuation which gives a strong positive bias on θ_γ values.
Estimating plants shielding effect

- A tomato plant consists of about 90% of water: the vegetative cover produces a **shielding effect** and then an overestimation of water content.

Monte Carlo method: estimation of the effect of attenuation as a function of the Biomass Water Content (BWC).

- The plants can be approximated to a layer of water that corresponds to the **BWC** in kg/m² (numerically equal to the water height in mm).

- The **count rate attenuation** Λ produced by the BWC is given by:

$$\Lambda = \frac{CR(BWC[mm])}{CR}$$

$$w_i = \frac{CR_{CAL}}{CR_i} \Lambda_i (0.899 + w_{CAL}^i) - 0.899$$

\[\Lambda = (-0.0120 \pm 0.0001) \cdot BWC + 1.0000\]

\[R^2 = 0.999\]
The water content in tomato plants was estimated from destructive above-ground biomass samples at different stages of plant growth. A straight line function was calculated for describing the growth of BWC in time:

$$BWC[mm] = 3.5 \times 10^{-3} \times t[h]$$
From the count rates to the **corrected** water content in soil.
Validations measurements: gamma vs gravimetric method

θ_g: soil water content inferred from gamma measurements
θ_y: measured with gravimetric measurements

<table>
<thead>
<tr>
<th>Date</th>
<th>θ_g [m3/m3]</th>
<th>θ_y [m3/m3]</th>
<th>$\Delta\theta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>21/09/17</td>
<td>23.7 ± 1.5</td>
<td>24.5 ± 1.1</td>
<td>3.4 %</td>
</tr>
<tr>
<td>24/07/17</td>
<td>16.7 ± 2.8</td>
<td>17.0 ± 1.9</td>
<td>1.8 %</td>
</tr>
<tr>
<td>26/07/17</td>
<td>26.5 ± 2.8</td>
<td>24.3 ± 1.3</td>
<td>-8.3 %</td>
</tr>
<tr>
<td>28/07/17</td>
<td>18.9 ± 1.5</td>
<td>17.9 ± 1.5</td>
<td>-5.7 %</td>
</tr>
</tbody>
</table>

$\Delta\theta \sim 2.1 \%$
Comparison with soil-crop system models

- **CRITeRIA** is a physically-based numerical model for simulating soil water balance.
- **AquaCrop** is the FAO tipping-bucket conceptual model for soil water transport based on soil hydraulic properties and crop water demand.
- **Irrinet** is a regional model for irrigation management implementing economic calculation of the crop-tailored irrigation profitability.

CRITeRIA show the best agreement with gamma data over the entire data-taking period while, **IRRINET** provides the best results in presence of the tomato crop.
Conclusions: what’s next?

✓ The attenuation of the 40K gamma signal coming from the ground is an unequivocal smoking gun for a soil water content increase after rainfalls and/or irrigation.

✓ Provided a (single) soil gravimetric calibration measurement and biomass samplings, soil water content can be assessed via proximal γ-ray spectroscopy at the level of 10%.

✓ Proximal γ-ray spectroscopy is an effective tool for estimating soil water content at field-scale makes it a promising technique in view of satellite data calibration.
For more information...

Modelling Soil Water Content in a Tomato Field: Proximal Gamma Ray Spectroscopy and Soil–Crop System Models

Biomass water content effect on soil moisture assessment via proximal gamma-ray spectroscopy

Investigating the potentialities of Monte Carlo simulation for assessing soil water content via proximal gamma-ray spectroscopy

Soil moisture as a potential variable for tracking and quantifying irrigation: a case study with proximal gamma-ray spectroscopy data.

Rain rate and radon daughters’ activity.

Bottardi, C., M., Baldoncini, M. Albéri, E. Chiarelli, M. Montuschi, K. G. C. Raptis, A. Serafini, V. Strati, and F. Mantovani Advances in Water Resources, In press