Examining the links between multifrequency backscatter, geomorphology and benthic habitat associations in marine protected areas.

Robert M Runya, Chris McGonigle and Rory Quinn

Ulster University School of Geography and Environmental Sciences

PhD Researcher

Email: runya-r@ulster.ac.uk

OVERVIEW

Introduction

☐ Measured backscatter varies with operating frequency, angle of incidence and sediment characteristics (Brown et al., 2019). ☐ The frequency response of backscatter varies greatly in soft sediments (Montereale-Gavazzi et al., 2018). ☐ The linkage between acoustic signal and sediment properties is complex (Lamarche & Lurton, 2018). ☐ Current need and potential of multifrequency backscatter for improved seafloor characterisation and classification (Costa, 2019).

OVERVIEW

Motivation for the study

However the benefits of multifrequency has not been fully realized due to;

- ☐ Slow advancement in sonar technology (Feldens *et al.,* 2018).
- ☐ Backscatter measurements are not fully supervised and standardized (Lurton & Lamarche, 2015).
- ☐ Lack of calibration making it difficult to quantify seafloor properties from backscatter
- ☐ The use of multifrequency backscatter for seafloor discrimination is still a green area of research.

OVERVIEW

Multifrequency responses

Comparisons in backscatter intensities between multispectral mosaics (Brown *et al.*, 2019).

RESEARCH OBJECTIVES

General objective: To critically examine the benefits of combining multifrequency backscatter responses optimized to discriminate seabed properties in areas with strong geomorphological gradients and associated ecological variability.

Specific objectives:

- 1. To examine multifrequency backscatter responses with geomorphological change at a temporal and spatial scale.
- 2. To examine the statistical relationship between multifrequency backscatter with sediment granulometry.

STUDY AREA

Hempton's Turbot Bank SAC

- Acoustic backscatter data collected in 2019; EM302 (30 kHz), EM1002 (95 kHz), EM2040 (200 kHz) & 2013;
 EM3002 (300 kHz) EM2040 (200 kHz).
- The area is designated by the **EC Habitats Directive** as a Special Area of Conservation as a sand feature.
- It harbours a high density of sand eels (*Ammodytes marinus*), a keystone species that is food to other species at higher trophic level.

METHODOLOGY

METHODOLOGY

Workflow of Data Collection & Processing

METHODOLOGY Gray-Level Co-occurrence Matrix

The GLCM measures how frequent different combinations of neighbouring pixel values occur with an analysis window. The analysis here was carried out in a 5* 5 pixel window (Haralick et al., 1973).

HODOLOGY

GLCM equations

CO=
$$\sum_{i,j=0}^{N-1} P_i, j (i-j)^2$$

Correlation

$$CC = \sum_{i,j=0}^{N-1} P_{i,j} \left[\frac{(i-ME) (j-ME)}{\sqrt{VA_i VA_i}} \right]$$

Dissimilarity

DI =
$$\sum_{i,j=0}^{N-1} P_{i,j} | i-j |$$

Entropy

$$EN = \sum_{i,j=0}^{N-1} P_{i,j} (-InP_{i,j})$$

Homogeneity

HO=
$$\sum_{i,j=0}^{N-1} \frac{P_{i,j}}{1+(i-j)^2}$$

Mean

$$ME = \sum_{i,j=0}^{N-1} P_{i,j}$$

Second Moment SM =
$$\sum_{i,j=0}^{N-1} P_{i,j}^2$$

$$VA = \sum_{i,i=0}^{N-1} P_i, j (i-ME)^2$$

Note: $P_{ij} = V_{i,j} 1 \sum_{i=0}^{N-1} V_{i,j}$

Where V_{ij} is the value in the cell I, j (row i and column j) of the moving window and N is the number of rows or columns.

Neighbouring pixels can be in four directions (0°, 45°, 90° and 135°). Source: Lu & Batistella (2005)

Multifrequency backscatter responses

- Multifrequency variability in backscatter responses of four main sediment types: fine gravel, sandy gravel, gravely sand and sand as shown above.
- Also compares 2019 (30, 95, 200-kHz) and 2013 (300 kHz) dataset.

Folk-sediment-trigon

Multifrequency backscatter responses

variations in in the GLCM.

The 30, 95, 200, 300 (kHz) frequencies are represented by; a, b, c, d respectively.

Multifrequency backscatter responses

Grabs

Grabs

Multifrequency backscatter responses

Folk-sediment-trigon

Homogeneity: measures the amount of similarities within a window.

The 30, 95, 200, 300 (kHz) frequencies are represented by; **a**, **b**, **c**, **d** respectively.

Spatial variability for fine gravel

OF 13 GRAB STATION (Mean depth: 48.5m)

Spatial variability for gravelly sand

OF 14 GRAB STATION (Mean depth: 44m)

Spatial variability for sand

OF 15 GRAB STATION (Mean depth: 42.2m)

Relationship between multifrequency backscatter & grain size

Table: Shows the relationship between mean grain size (response variable) and GLCM features contrast(2nd order statistics), and mean backscatter(1st order statistics).

	SPEARMAN'S RANK CORRELATION COEFFICIENTS			
Frequency/				
GLCM features	30 kHz (2019	95 kHz (2019)	200 kHz (2019)	300 kHz (2013)
Contrast	0.13	-0.01	-0.32	0.06
Entropy	-0.2	-0.07	-0.52	0.31
Homogeneity	-0.02	-0.06	0.7	-0.07
Mean-Backscatter	0.85	0.44	0.86	0.34

Mean backscatter has a strong linear relationship with grain size for 30 & 95-kHz, homogeneity corelates positively with grain size at 200 kHz.

Solid colour: strong correlation

Light colour: weak correlation

SUMMARY & FUTURE WORK

Conclusions

- ☐ The preliminary results reveal the presence of a *frequency response* of different sediment types; high local variation.
- The multifrequency textural features provides evidence for *fine scale spatial* variability of geomorphological gradients that cannot be fully revealed by backscatter imagery alone.
- Mean backscatter from backscatter imagery is a stronger linear predictor of mean sediment grain size than 2nd order GLCM statistics. Mean backscatter had a higher correlation coefficient with grain size; 0.85 and 0.86 for 30 kHz and 200 kHz respectively.
- \square Lack of a linear relationship between grain size and 2nd order statistics except for "homogeneity" at 200 kHz with a correlation coefficient of 0.7.

SUMMARY & FUTURE WORK

Perspective and future work

- ☐ The relationship between backscatter, its derivates and sediment granulometry is complex.
- ☐ We are working to explore further the explanatory power of multifrequency for an improved seafloor discrimination and ecological characterization.
- ☐ This ongoing work will provide useful insights on optimizing acquisition and processing parameters to generate best practices and enhance our ability for monitoring Marine Protected Areas.

REFERENCES

- Brown, C. J., Beaudoin, J., Brissette, M and Gazzola, V (2019). Multispectral Multibeam Echo Sounder Backscatter as a Tool for Improved Seafloor Characterization. *Geosciences (Switzerland)* 9(3).
- Costa, B (2019). Multispectral Acoustic Backscatter: How Useful Is It for Marine Habitat Mapping and Management? Journal of Coastal Research 35(5): 1062.
- Feldens, P et al(2018). Improved Interpretation of Marine Sedimentary Environments Using Multi-Frequency Multibeam Backscatter Data. *Geosciences (Switzerland)* 8(6).
- Haralick, R.M., Shanmugam, K., Dinstein, I (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics, SMC-3: 610-620.
- Lamarche, G and Lurton, X (2018). Recommendations for Improved and Coherent Acquisition and Processing of Backscatter Data from Seafloor-Mapping Sonars. *Marine Geophysical Research* 39(1–2): 5–22.
- LU, D and Batistella, M (2005). Exploring TM Image Texture and its Relationships with Biomass Estimation in Rondônia, Brazilian Amazon. ACT AMAZONICA. VOL. 35(2) 2005: 249 257.
- Lurton, X. and Lamarche, G (Eds) (2015). Backscatter measurements by seafloor mapping sonars. Guidelines and Recommendations. 200p.
- Montereale-Gavazzi, Giacomo et al. (2018). Seafloor Change Detection Using Multibeam Echosounder Backscatter: Case Study on the Belgian Part of the North Sea. *Marine Geophysical Research* 39(1–2): 229–47.

THANK YOU!

