

EGU2020-22442 | Displays | OS1.12/BG4.13/CL4.28

Thu, 07 May, 14:00–15:45 | D2758

Long time-series of export fluxes in the western Ross Sea (Antarctica)

Patrizia Giordano^{1*}, Federico Giglio¹, Mariangela Ravaioli², Marco Capello³, Laura Cutroneo³, Robert B. Dunbar⁴, David A. Mucciarone⁴, Walker O. Smith⁵, Clara Manno⁶, and Leonardo Langone^{1*}

- ¹ CNR, Institute of Polar Sciences, Bologna, Italy
- ² CNR, Institute of Marine Sciences, Bologna, Italy
- ³ University of Genoa, DISTAV, Genoa, Italy
- ⁴ Stanford University, Stanford, USA
- ⁵ Virginia Institute of Marine Science, Gloucester Point, USA
- ⁶ BAS, British Antarctic Survey, Cambridge, UK
- *leonardo.langone@cnr.it, patrizia.giordano@cnr.it

Why measuring particulate organic carbon fluxes?

- ✓ The export of particulate organic carbon (POC) from the sea surface is an essential part of the biological pump
- ✓ The biological pump contributes in regulating the global climate
- Export fluxes are the result of what is produced in surface water and how much is consumed during particle sinking in the water column and then accumulating on the seafloor.
- ✓ Deep ocean and sediment burial retain CO₂ for a relatively long period (decadal to millennial)

Compilation of all data available (new and published) of vertical particle fluxes obtained by automatic sediment traps tethered to 23 moorings deployed between 1991-2017 in the western Ross Sea (Antarctica)

Flux Summary (1/2)

- High <u>seasonal</u> variability of POC fluxes with peaks in late summer-fall delayed of ca. 2 months from primary production blooms
- High interannual variability
- Organic carbon (OC) fluxes vary by a factor of 3 in SW Ross Sea (site A), and by a 6 factor in the Terra Nova polynya (site D)

Flux Summary (2/2)

- Total mass fluxes (TMF) higher in bottom traps → Lateral advection in near-bottom
- **Spatial gradients** (decreasing from South-North and coast-to-open ocean)

Trap data compilation from Catalano et al., 2010

Elemental composition

- OC vs. N fluxes well correlated
- Good correlation
 between OC and TMF
 → particle fluxes
 dominated by
 biogenic debris
- OC vs. biogenic silica fluxes correlated → high diatom preservation with respect to other phytoplankton

From previous studies in the Ross Sea, seasonal variability of particle fluxes and the timing of peaks may depend on:

- Primary production
- Grazing rate
- Autumn convective mixing
- Late-summer algal blooms

(Data from the SeaWifS and Modis satellites during 1997–2011 (Smith et al., 2012, Oceanography 25: 90-103

BUT, what about the interannual flux variability or long-term trends and in case, which are the main factors controlling them?

Changes in:

- ✓ Biological production
- ✓ OM consumption
- ✓ other processes

 (e.g., lateral transfer
 of biogenic particles
 in/out the Ross sea)

Interannual variability and long-term trend

- ✓ Large interannual variability of TMF (3.8-122.6 g m⁻² y⁻¹) and POC fluxes (17-1147 mmol m⁻² y⁻¹)
- ✓ Negative shift of TMF and POC fluxes after 2000
- ✓ Reduced export fluxes between 2001-2004 (B15 & C19 icebergs)

Are particle fluxes decreasing in 21st century?

Site B (Joides Basin)

- ✓ The more complete time series by site B
- ✓ Again, lower export fluxes after 2000
- ✓ Chlorophyll is lowering (very slowly) at long time scale
- ✓ Productive season in NDJF
- ✓ Possible shift toward lower values in NDJF from winter 2007-08

giovanni.gsfc.nasa.gov/giovanni Region 172E, 75S, 178E, 73S, Joides basin

Site B (Joides Basin)

- ✓ Water temperature is decreasing over time at both depths
- ✓ From 2002-2005, shift toward colder, fresher, and less dense bottom waters (no data in 2002 by B15 and C19 icebergs)
- ✓ At mid-depth, marked interannual variability (10-y frequency)
- ✓ Temperature inversely correlated at the 2 depths before 2010. After that, temperatures oscillate in phase (higher water column homogenization)

- Weak increase of sea ice extent on long time interval
- The duration of sea ice cover is increasing in November (algal blooms delayed?)

Temperature data from MORSEA, Italian Marine Observatory http://morsea.uniparthenope.it/

Summary

What about the export fluxes in the Ross Sea during the last 25 years?

The efficiency of biological pump is decreasing, too?

- Export fluxes in Ross Sea are decreasing on a long term time scale, with a clear shift after 2000
- In addition, export fluxes show also an interannual variability
- At long time scale, chlorophyll, temperature and salinity show a slight decrease, while sea ice are increasing, specially in November (MIZ retreat delayed and shorter growth season?)
- ➤ Lower temperatures could imply less intrusion of CDW during the last 20 years, and hence, less available nutrients and Fe
- CDW intrusion (and nutrient supply) could drive interannual variability of export fluxes

We do not know. As a working hypothesis:

✓ Delayed algal blooms and/or shift in algal composition may cause lower particle sinking rate and less fecal pellets with lower preservation of organic material sinking in the water column

