

How does silica affect Fe(II)-catalysed transformation of iron oxyhydroxides?

Katrin Schulz, Laurel K. Thomas Arrigo, Katherine A. Rothwell, Ruben Kretzschmar

#shareEGU

We are only showing a

reduced dataset

Soil Chemistry Group, ETH Zurich, Switzerland

https://soilchem.ethz.ch/

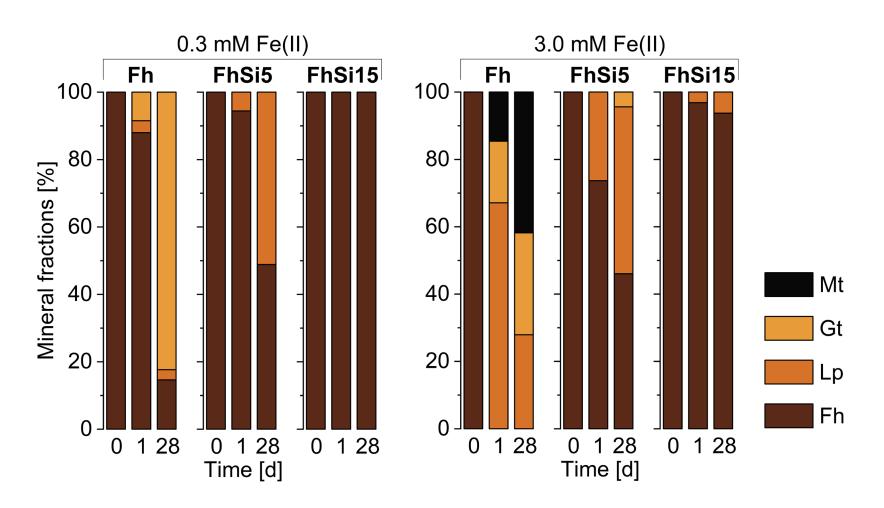
Relevance

W @KSchulzSoil

katrin.schulz@usys.ethz.ch

- Iron oxyhydroxides can control trace element mobility under redox fluctuating conditions¹
- Silicic acid is a weathering product of silicate rocks (90 % of earth's crust!) and is ubiquitous in soil solutions
- The precipitation of ferrihydrite in the presence of silica leads to **ferrihydrite-silica co-precipitates**²
- In redox active environments, recurring Fe(II) oxidation leads to the regular precipitation of impurity bearing ferrihydrite during oxic periods

Co-precipitated silica alters the mineral phase of ferrihydrite transformation products, without hindering iron atom exchange

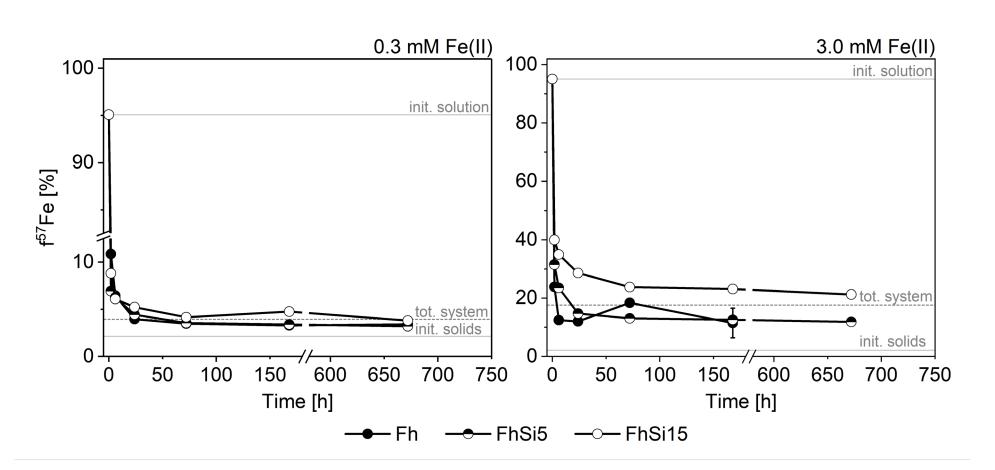

Experimental setup – Model study

- Minerals: Fh and FhSi co-precipitated with 5 % and 15 % Si/(Si+Fe)
- Aqueous: ⁵⁷Fe labelled Fe(II), 0.3 and 3 mM

- Time: 4 weeks, six sampling points (solid and aqueous phase)
- Analyses: XRD, ICP-MS

X-ray diffraction: Mineral phase fractions

K. Schulz, L. Thomas Arrigo, K. A.Rothwell, R. Kretzschmar


Fig 1: Mineral phase fractions in solids before and during the reaction with 0.3 mM (left) and 3.0 mM (right) Fe(II) for 1 and 28 days, determined by XRD and Rietveld refinement. The sample Fh 3.0 mM additionally contained trace siderite (<1 %) after 28 days. Abbreviations: Fh = ferrihydrite, FhSi5/15 = ferrihydrite silica coprecipitates with Si/(Si+Fe) = 5 % and 15 %, Lp = lepidocrocite, Gt = goethite, Mt = magnetite, d = days.

Silica hinders ferrihydrite transformation

The hindering effect is stronger for higher silica concentrations

K. Schulz, L. Thomas Arrigo, K. A.Rothwell, R. Kretzschmar

Fig 2: Isotope fraction of ⁵⁷Fe in aqueous samples (<0.22 μ m) before and during the reaction with 0.3 mM (left) and 3.0 mM (right) Fe(II). Error bars show the standard error between experimental triplicates, errors <1 % are smaller than the symbols and are not shown. For Fh 3.0 mM, data is only shown until 1 week (168 h), as aqueous Fe concentrations were too low (<20 ppb) to facilitate reliable Fe isotope measurements. Abbreviations: Fh = ferrihydrite, FhSi5/15 = ferrihydrite silica co-precipitates with 5 % and 15 % Si/(Si+Fe), h = hours.

Despite hindered transformation of ferrihydrite-silica, iron atom exchange is almost complete

Conclusions and Outlook

K. Schulz, L. Thomas Arrigo, K. A.Rothwell, R. Kretzschmar

Co-precipitated silica hinders ferrihydrite transformation, but not iron atom exchange.

This likely affects **mineral stability** against reductive dissolution and **sorption capacity** for trace elements.

We are only showing a **reduced dataset**, since it is not published yet.

Literature

- [1] Couture, R.-M., et al. (2015). "On-off mobilization of contaminants in soils during redox oscillations." Environ. Sci. Technol. 49(5): 3015-3023.
- [2] Cismasu, A. C., et al. (2014). "Properties of impurity-bearing ferrihydrite III. Effects of Si on the structure of 2-line ferrihydrite." Geochim. Cosmochim. Acta 133: 168-185.

Acknowledgements

We thank Kurt Barmettler for his support in the lab.

This research is part of a project that has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (788009-IRMIDYN-ERC-2017-ADG).

