QUANTITATIVE FRACTURE CHARACTERIZATION IN THE DAMAGE ZONE OF THE VICTORIA FAULT, MALTA

Authors: Anna LOSA, Andrea BISTACCHI and Mattia MARTINELLI
Main goals of the project

Digital Outcrop Model (DOM)

«ideal» scanline

fracture «maturity»

Barcode and P₁₀ plot of the damage zone

Does it affect the results?
Geological framework

- Pelagian platform: foreland of the Appennine-Sicilian-Maghrebian belt
- Two main extensional events:
 - **D1**: WNW-ESE extension (20-17 Ma): normal fault and Neptunian dikes,
 - **D2**: N-S extension (7-1.5 Ma) and formation of the coeval sets ENE-WSW and WNW-ESE.
Stratigraphy

<table>
<thead>
<tr>
<th>Ma</th>
<th>Age</th>
<th>Lithology</th>
<th>Member</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Maaanian</td>
<td>Gebel Imbark</td>
<td>Tal-Pitkal</td>
<td>Upper Coralline Limestone (75 - 100 m)</td>
</tr>
<tr>
<td></td>
<td>Tortonian</td>
<td>Mtarfa</td>
<td>Ghaluj Molel</td>
<td>Green sand (0 - 11 m)</td>
</tr>
<tr>
<td>11</td>
<td>Serravallian</td>
<td>Upper Globigerina (2 - 15 m)</td>
<td>UMCB</td>
<td>Blue Clay (10 - 100 m)</td>
</tr>
<tr>
<td>16</td>
<td>Langhian</td>
<td>Middle Globigerina (0 - 15 m)</td>
<td>UMCB</td>
<td>Globigerina Limestone</td>
</tr>
<tr>
<td>20</td>
<td>Burdigalian</td>
<td>Lower Globigerina (5 - 40 m)</td>
<td>LMCB</td>
<td>Lower Coralline Limestone (300 - 450 m)</td>
</tr>
<tr>
<td>23</td>
<td>Aquitanian</td>
<td>Lower Coralline Limestone (0 - 50 m)</td>
<td>LMCB</td>
<td>Xlendi (Ox): limestones with a top layer of echinoids Scutella subrotunda (called Scutella Bed),</td>
</tr>
<tr>
<td>28</td>
<td>Chattian</td>
<td>Xlendi</td>
<td>Attard</td>
<td>Mediterranean Sea</td>
</tr>
<tr>
<td></td>
<td>Oligocene</td>
<td>Maghlaq</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

More details in Martinelli, Bistacchi, Balsamo & Meda, JSG, 2019

Lower Globigerina (Mlg): Planktonic foraminifers *Globigerina* with Neptunian dikes

Xlendi (Ox): Limestones with a top layer of echinoids *Scutella subrotunda* (called *Scutella Bed*).
Field analysis and drone photogrammetry

PHASE 1

1.1 Definition of 7 scanlines perpendicular to the Victoria Fault

1.2 Collect data: attitude of the discontinuities, openings and filling

1.3 Orientation and kinematic analysis

PHASE 2

2.1 Image acquisition (drone)

2.2 Photo alignment

2.3 Sparse and Dense point cloud

2.4 3D Mesh and texture building

2.5 DTM

2.6 Orthophoto

Image acquisition (drone)

Photo alignment

Sparse point cloud

Dense point cloud
Victoria Fault NE (1)

• The 4 sets of fractures, the Victoria Fault and the lithologies were traced on the orthophotos.

• Construction of an «ideal» scanline (Azimuth 122°), segmented, and perpendicular to the Victoria Fault (Azimut 212):

 24 scanlines 4 scanlines

→ calculate the intersections between fracture sets and scanlines
Two equivalent methods to calculate **progressive distances** along scanlines:

1. Pythagorean theorem and Terzaghi correction (1965)

2. Calculation of the distance from a point to a plane

\[
d(P, \pi) = \frac{|ax_P + by_P + cz_P + d|}{\sqrt{a^2 + b^2 + c^2}}
\]

→ statistical analysis of spacing
Geological and structural field analysis

- Orientation statistics of the master fault plane of the Victoria Fault:

 → results consistent with the N-S extensional phase (D2) of Martinelli et al. (2019)
Photogrammetry fracture analysis

- Orientation statistics of fractures traced on the orthophotos: 4 well-defined sets.

<table>
<thead>
<tr>
<th>set</th>
<th>quantity</th>
<th>trend</th>
<th>plunge</th>
<th>kappa</th>
<th>mean length</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENE-WSW</td>
<td>2988</td>
<td>64.1</td>
<td>0</td>
<td>1.5</td>
<td>0.3251</td>
</tr>
<tr>
<td>NE-SW</td>
<td>4039</td>
<td>35.5</td>
<td>0</td>
<td>2</td>
<td>0.4899</td>
</tr>
<tr>
<td>N-S</td>
<td>2100</td>
<td>1.5</td>
<td>0</td>
<td>1.6</td>
<td>0.3598</td>
</tr>
<tr>
<td>WNW-ESE</td>
<td>4058</td>
<td>147.4</td>
<td>0</td>
<td>1.2</td>
<td>0.1766</td>
</tr>
</tbody>
</table>
Fracture analysis: lengths

- Fracture length statistics for the 4 sets and for the terrestrial scanlines

SET statistics

<table>
<thead>
<tr>
<th>SET</th>
<th>ENE-WNW</th>
<th>NE-SW</th>
<th>N-S</th>
<th>WNW-ESE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>2988</td>
<td>4039</td>
<td>2100</td>
<td>4058</td>
</tr>
<tr>
<td>Minimum [m]</td>
<td>0.109</td>
<td>0.112</td>
<td>0.118</td>
<td>0.136</td>
</tr>
<tr>
<td>Maximum [m]</td>
<td>125.612</td>
<td>74.056</td>
<td>28.845</td>
<td>59.564</td>
</tr>
<tr>
<td>Mean [m]</td>
<td>6.222</td>
<td>3.996</td>
<td>2.309</td>
<td>3.268</td>
</tr>
<tr>
<td>Standard Deviation [m]</td>
<td>10.175</td>
<td>6.288</td>
<td>3.406</td>
<td>4.996</td>
</tr>
</tbody>
</table>

→ negative exponentials
Statistical analysis of field scanlines (1):

Statistical analysis of the spacing (ex. scanline 1):

- K-S test for uniform spacing
- Barcode
- Spacing frequency
Statistical analysis of field scanlines (1)

Statistical analysis of the spacing (ex. scanline 1):

Barcode

K-S test for stationary spacing

**K-S test for GAUSSIA spacing distribution with x = 2.4079 and std.dev. = 0.8410: (corrected) -0.172 - 0.184 (non-corrected) p-value = 0.000

No evidence against H0 of no difference with GAUSSIA distribution. No evidence against a GAUSSIA spacing distribution is detected at 5% significance.

**K-S test for EXPONENTIAL spacing distribution with x = 0.7502 in range: 0.039 - 0.207 (corrected) -0.039 - 0.207 (non-corrected) p-value = 0.7782

No evidence against H0 of no difference with EXPONENTIAL distribution. No evidence against an EXPONENTIAL spacing distribution is detected at 5% significance.
Statistical analysis of field scanlines (2)

Purpose of the work
- Terzaghi
- Geological framework

Analysis methods
- Results and data analysis

Conclusions
- Analysis

<table>
<thead>
<tr>
<th>Method</th>
<th>Lithology</th>
<th>Scanline</th>
<th>X_min</th>
<th>X_max</th>
<th>n. data</th>
<th>Trend test</th>
<th>Pattern test</th>
<th>Uniform dist. test</th>
<th>Poisson dist. test</th>
<th>Scan</th>
<th>Mean</th>
<th>Standard dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>P<sub>0</sub></th>
<th>Spacing statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terzaghi</td>
<td>mlg</td>
<td>1:00-15.50</td>
<td>0</td>
<td>15.5</td>
<td>62</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>1a</td>
<td>0.2541</td>
<td>0.22785</td>
<td>3.3696</td>
<td>17.407</td>
<td>3.9355</td>
<td>rejected</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>ox</td>
<td>1:15.5-17</td>
<td>15.5</td>
<td>27</td>
<td>13</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>1b</td>
<td>0.38058</td>
<td>0.32897</td>
<td>0.55061</td>
<td>2.1262</td>
<td>2.6275</td>
<td>0.38058</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>mlg</td>
<td>2:00-17.7</td>
<td>0</td>
<td>17.2</td>
<td>76</td>
<td>trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>2</td>
<td>0.09108</td>
<td>0.07136</td>
<td>1.8463</td>
<td>7.4887</td>
<td>30.9799</td>
<td>rejected</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>ox</td>
<td>3:00-3.14</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>3a</td>
<td>0.05528</td>
<td>0.0444</td>
<td>1.7814</td>
<td>5.3296</td>
<td>18.7693</td>
<td>0.05328</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>ox</td>
<td>3:14-8.10</td>
<td>3.14</td>
<td>8.1</td>
<td>13</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>3b</td>
<td>0.18335</td>
<td>0.13709</td>
<td>1.6582</td>
<td>4.964</td>
<td>5.4481</td>
<td>0.18325</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>ox</td>
<td>4:00-0.76</td>
<td>0</td>
<td>7.6</td>
<td>25</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>4</td>
<td>0.19911</td>
<td>0.16236</td>
<td>0.83854</td>
<td>2.0193</td>
<td>5.0223</td>
<td>0.19911</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>mlg</td>
<td>5:00-1.60</td>
<td>0</td>
<td>16</td>
<td>24</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>5a</td>
<td>0.05151</td>
<td>0.03338</td>
<td>0.60767</td>
<td>2.313</td>
<td>3.4129</td>
<td>0.05151</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>ox</td>
<td>5:1-6.60</td>
<td>1.6</td>
<td>6.6</td>
<td>15</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>5b</td>
<td>0.26464</td>
<td>0.10776</td>
<td>0.75436</td>
<td>2.6021</td>
<td>3.7813</td>
<td>rejected</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>mlg</td>
<td>6:00-6.3</td>
<td>0</td>
<td>6.3</td>
<td>33</td>
<td>no_trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>6</td>
<td>0.13748</td>
<td>0.11308</td>
<td>1.1087</td>
<td>3.9128</td>
<td>7.2736</td>
<td>0.13748</td>
</tr>
<tr>
<td>Terzaghi</td>
<td>mlg</td>
<td>7:00-5.8</td>
<td>0</td>
<td>5.8</td>
<td>30</td>
<td>trend</td>
<td>no_pattern</td>
<td>retained</td>
<td>retained</td>
<td>7</td>
<td>0.11047</td>
<td>0.07513</td>
<td>1.5068</td>
<td>5.3681</td>
<td>9.0524</td>
<td>rejected</td>
</tr>
</tbody>
</table>

Depending on the distance from the fault, we observe 3 distributions (from the closest) with different skewness:

- normal
- log-normal
- exponential
Statistical analysis of the scanline from photogrammetry (2)

- comparison between P_{10} values and the barcode plot: main scanline and secondary scanlines

→ the main scanline is representative and consistent with smaller “check” scanlines
→ P_{10} values are higher for Middle Globigerina than for Lower Coralline
→ width of the inner damage zone: 120 m
→ presence of fracture corridors at -200 and -400 m from the fault core (0 m) in the Middle Globigerina
Statistical analysis of the scanline from photogrammetry (3)

- comparison between P_{10} values and the barcode plots of field scanlines with those from photogrammetry

 field scanlines have higher P_{10} values

 but

 different detection **scale**:

 drone: 0.10 - 130 m
 field: 0.01 - 1 m

→ the P_{10} values must be accompanied with the scale of the observed fractures and resolution of the analysis!
Crosscutting and abutting relations between set A and B

→ both sets are coeval and belong to the deformation phase D2
Statistical analysis of the scanline from photogrammetry (4)

subdivision into 2 sets

- NE-SW and ENE-WSW
- N-S and WNW-ESE

→ set A: greater variability
→ set B: much more stable

main fractures sub-parallel to the Victoria Fault,
average spacing 0.98 m

secondary fractures, average spacing 3.17 m
Fracture network analysis (2)

deformation evolution based on spacing distributions (e.g. according to Rives et al. 1992):

- **negative exponential (initial phase)***
- **log-normal (intermediate phase)***
- **normal (final phase)***

- photogrammetry scanline: majority of log-normal
- field scanline: the three phases are observed according to the distance from the Victoria Fault

![Fracture spacing](image-url)
Fracture network analysis (3)

Analysis of the «maturity» stage of fracturing using the mode/mean ratio (Rives et al., 1992)

- values \to 1 indicate saturation
- values \to 0 poorly developed set
Conclusions (1)

Digital Outcrop Model (DOM)

4 sets of fracture:

- NE-SW medium spacing: 2.84 m
- NE-SW medium spacing: 0.81 m
- WNW-ENE medium spacing: 1.45 m
- NE-SW medium spacing: 1.10 m

→ always considering the survey scale
Conclusions (2)

«maturity» of the fault zone as described by fracture statistics

- **exponential distribution**
- **log-normal distribution**
- **normal distribution**

Increasing fracture saturation and fault zone maturity.
Address to:

Università degli Studi di Milano Bicocca, Dipartimento di Scienze dell'Ambiente e della Terra, Milano, Italy

Anna LOSA a.losa3@campus.unimib.it
Andrea BISTACCHI andrea.bistacchi@unimib.it
Mattia MARTINELLI m.martinelli34@campus.unimib.it

References:
