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Objectives

• Develop a better understanding of rapid preferential flow dynamics in the vadose zone of

fractured aquifers.

• Reproduce free-surface flow (i.e. droplet vs. rivulet flow) in controlled lab experiments to

investigate (i) mass partitioning at unsaturated fracture intersections and (ii) the effect of

imbibition with a porous matrix on the discharge signal.

• Test analytical approach for upscaling repetitive capillary driven fracture-filling in idealized

fracture cascades without imbibition.
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Analogue percolation experiments I (no imbibition)
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Figure 1: Laboratory setup (Kordilla et al. 2017, Noffz et al. 2019)
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Figure 2: Inlet geometry (Noffz et

al. 2019) 2



Analogue percolation experiments I (no imbibition)
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Figure 3: Inlets and

rivulets

• Total flow rate Q0 = 15 ml/min

• Flow regimes: Droplet (15 ×
1 ml/min) and rivulet flow (3×
5 ml/min)

• Aperture width df between

0.7 mm and 2.5 mm

• Horizontal offset do between

−4 mm and 4 mm

• Static contact angle θ0 ≈ 65◦

• For rivulet flow the cascade was

extended up to three horizontal

fractures

df

do
+

-

Figure 4: Inlet array

nf = 1 2 3

Figure 5: Fracture cascades 3



Analogue percolation experiments II (with imbibition)

Figure 6: Sandstone network (Rüdiger et

al. 2020, under review)

• Applied flow rate Q0 is 0.75 ml/min to 3.5 ml/min

• Size of a single sandstone slice ≈ 5 cm×5 cm×1 cm

• Aperture used throughout all experiments is 1 mm

• Network is arranged with and without horizontal off-

set at each intersection

• Experiments of the same geometry but using non-

porous acrylic glass slices were conducted for com-

parison
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Results & Discussion



Partitioning dynamics I (no imbibition)
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Figure 7: Partitioning dynamics captured at 240 fps (Noffz et al.

2019)

• Droplet flow: Exhibits com-

plex partitioning dynamics

and may bypass the aperture

or contribute to its filling

• Rivulet flow: Hydraulically

connects inlet and the en-

countered fracture
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Partitioning dynamics I (no imbibition)
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Figure 8: Bypassing mass Mb vs. time for variable fracture geom-

etry

• Negative horizontal offsets

do reduce the bypass effi-

ciency of droplet and rivulet

flow

• Small opening widths df
benefit the mass transport

across the aperture
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Partitioning dynamics II (with imbibition)

Figure 9: Stages of the discharge signal (Rüdiger et

al. 2020, under review)

Figure 10: Normalized discharge rate (Rüdiger et

al. 2020, under review)

• I: Pre-arrival; no mass accumulation (i.e.

introduced water distributes in the fracture

network and pore space)

• II: First-arrival; first discharge pulse accu-

mulates on the drip pan and the discharge

rate successively approximates the inflow

• III: Steady-state; inflow rate equals the dis-

charge (not fully established in this experi-

ment)
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Partitioning dynamics II (with imbibition)

Figure 11: Normalized discharge (Rüdiger et al.

2020, under review)

Figure 12: Arrival times for variable offsets (Rüdiger

et al. 2020, under review)

• At an equal flow rate arrival times and the

amplitude of pulsating flow signals during

infiltration in porous vs. non-porous net-

work differ strongly (i.e. the arrival is de-

layed, where imbibition occurs)

• Higher flow rates result in earlier arrival

times

• For a low flow rate a successive increase of

the horizontal offset tends to increase ar-

rival times, which is not apparent at higher

rates
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Analytical approach



Transfer-function

A transfer function accounts for characteristic flow parti-

tioning into a horizontal fracture

ϕ(t) =
dQ1(t)

dt
= −dQf (t)

dt
, (1)

which can be approximated by a Gaussian

ϕ(t) ∝
exp

[
− (t−µ)2

2σ2

]
√

2πσ2
, (2)

∞∫
0

dtϕ(t) = 1 . (3)

Figure 13: Normalized fracture inflow

rate vs. time; df = 1 mm (Noffz et al.

2019)
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Transfer-function

The total fracture outflow Qf ,nf after nf fractures is

Qf ,nf (t) = Q0

1−
t∫

0

dtnf−1ϕ(t − tnf−1)· · ·
t3∫
0

dt2ϕ(t3 − t2)

t2∫
0

dt1ϕ(t1)

 . (4)

Figure 14: Normalized fracture inflow rate vs. time;

df = 1 mm (Noffz et al. 2019)

• Predictive modeling by Gaussian transfer-

function approximates the fracture filling

with limitations

• ”Tailing” not accurately recovered yet
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Conclusion

• Gravity-driven free surface flow modes can be accurately delineated in analogue

percolation experiments. Here, rivulet flow is shown the most effective wetting of an

unsaturated horizontal fracture.

• Geometric alterations of the fracture intersection influence the bypass behaviour of

droplets and rivulets (i.e. postive offsets further benefited a bypass).

• Application of Gaussian transfer-function recovers repetitive fracture filling and enables

predictive modeling for rivulet flow, where imbibition with a porous matrix does not occur.

• Imbibition of a porous matrix tends to dampen the amplitude of discharge pulses and

delays steady state conditions (i.e. inflow equals outflow rate).

• Hence, process-orientated analytical approaches demand further refinement to account for

such effects across scales.

Outlook:

• To investigate the mass redistribution in natural settings it is planned to conduct further

field percolation experiments in well characterized lime- and sandstone formations.
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Questions? Contact me: tnoffz@gwdg.de
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