

LAC-IC 2018: Evaluation of the first IAEA regional water $\delta^{18}O/\delta^{2}H$ interlaboratory comparison exercise

Stefan Terzer-Wassmuth, Lucía Ortega, Luis Araguás-Araguás, and Leonard I. Wassenaar

Isotope Hydrology Section, International Atomic Energy Agency

Motivation

 Data accuracy challenge for Global Network of Isotopes in Precipitation (GNIP):

"The measurements in GNIP have a long-term uncertainty of about ± 0.1 % for δ^{18} O and ± 0.8 % for δ^{2} H. at one standard deviation."

 Only benchmark: proficiency tests on ~quadrennial schedule (WICO 2016, 2020)

Retrospective: WICO 2016

- Global PT with 235 labs, ca. 60% LAS (Wassenaar et al. 2018)
- Similar performance for LAS and CF-IRMS labs
- No conclusion on identifying good and poor performance

LAC-IC Rationale

- Easy access to δ¹8O and δ²H needed
- Rapid proliferation of devices in the region with advent of LAS
- Data reliability and comparability?

Steps:

- Pre-survey of laboratories
- Regional proficiency test
- Disentangle the "known unknowns"

Devices available in the region 2000-18 (Terzer-Wassmuth et al., accepted manuscript)

Pre-survey (early 2018)

- Distributed in English and Spanish languages to 37 labs
- Instrumentation
 - Type, age, peripherals
- Human resources
 - Skill level and experience
 - Self-assessment of Pl's
 - Sample throughput

- Reference materials
 - Primary RMs and access, handling
 - Secondary RMs, storage, range
 - Use of control samples
- Post-processing
 - Software used
 - Corrections applied
 - Acceptance criteria
- WICO 2016 participation

Pre-survey results (I)

44 instruments in 37 labs

- 32 LAS with autosampler, mostly 8-9 injections
- 12 IRMS, most CO₂ or H₂ equilibration

Human resource:

 Only 45% ranked overall experience as "intermediate to high" or "high"

Throughput

- Only 20% analyse 1500/yr or more

Working RMs:

see next slide

Data processing:

- All used multipoint calibration
- 60% used controls regularly
- 52% used LIMS (USGS) or LIMS for Lasers (USGS/IAEA)
- 85% chose appropriate corrections
- Only 27% could state their typical uncertainties

Pre-survey results (II)

- Primary RMs:
 - 80% use IAEA or USGS primary RMs
- Working RMs:
 - Most use steel barrels or glass flasks
 - 20% had bracketing ranges of < 10 ‰ δ^{18} O
- Only 44% were able to bracket the span of their country.
 - Most issues with enriched bracket.

Country-based δ¹⁸O ranges. Red/blue lines/shades: Median/IQR of enriched/depleted working RMs. (Terzer-Wassmuth et al., accepted manuscript)

Proficiency test (2018/19)

Test schedule

- Samples sent out November 2018
- Reporting deadline in March 2019
- (individual extensions granted)

3 samples sent to 28 labs

- δ¹⁸O between -0.96 and -15.31 ‰
- $-\delta^2$ H between -2.5 and -110.3 ‰

25 labs returned

21 LAS, 3 CF-IRMS, 1 both

Map of participating laboratories (green dots)

Proficiency test results (I)

Assessment

- Z-score
$$z = \frac{x - x_0}{\sigma_p}$$

- Zeta-score
$$\zeta = \frac{x - x_a}{\sqrt{u_x^2 + u_{xa}^2}}$$

SDPA

- σ_p for δ^{18} O: 0.1 % - σ_p for δ^2 H: 0.8 %

Benchmarks:

- Acceptable: $|z| \le 2$ (green)

- Questionable: 2 < |z| < 3 (orange)

Unacceptable: |z| ≥ 3

Test samples and Youden dual-isotope plots (Terzer-Wassmuth et al., accepted manuscript)

Proficiency test results (II)

- Participants received individual lab reports in May 2019
- Major biases and eventual causes highlighted
- S-plots confirm Youden plots: Biases are smaller for δ^2H

S-plots of z vs. rank (Terzer-Wassmuth et al., accepted manuscript)

Proficiency test results (III)

Youden crossplots for "neighbouring samples" reveal systematic biases:

- Ficticious examples:
 - Red: Mis-calibrated reference standards for both δ¹8O and δ²H (affects both at similar magnitude and directions)
 - Yellow: Problems with one isotope (maybe instrumental, e.g. uncorrected δ¹8O-H₂O linearity on OA-ICOS)
 - Green: Unsystematic biases
- Grey: LAC-IC participants

Youden plots for "neighbouring" samples (Terzer-Wassmuth et al., accepted manuscript)

"Proficiency trajectory"

- Related LAC-IC to WICO 2016
- Mean |z| of $\delta^{18}O$ and $\delta^{2}H$ as a measure of "overall performance".
- |z| for WICO 2016 recalculated with the σ_p of LAC-IC
 - Green arrows include improvement $(\Delta |z| < -1)$,
 - red arrows otherwise $(\Delta |z| > 1)$
- (All participants consented to this.)

(Terzer-Wassmuth et al., accepted manuscript)

Self & outside assessment

- Do submitters realistically state uncertainty?
- Cumulative z- vs. ζ-scores
- Upper left: Satisfactory or questionable results but overoptimistic uncertainty reporting
- Lower right: Realistic assessment of large biases

(Terzer-Wassmuth et al., accepted manuscript)

Causes of performance

- Experience level would deem logical but couldn't be sustained
- Sample throughput
- RM availability and handling (expert score ranking)
- Post-processing techniques (expert score ranking)

(Terzer-Wassmuth et al., accepted manuscript)

Conclusions

- Contributing factors for good and poor performance identified
- Assess throughput before buying
- Have an eye on laboratory RMs (primary and working)
- Robust data treatment and training therein (no black box!)

WICO 2020 in the making...

Acknowledgements & References

Acknowledgements:

- We appreciate the kind cooperation of more than 30 laboratories and their PIs in the LAC region
- This study was financed by the International Atomic Energy Agency (with contributions from the Department of Technical Cooperation under project RLA/7/024)

References:

- Terzer-Wassmuth et al. (accepted manuscript): The first IAEA interlaboratory comparison exercise in Latin America and the Caribbean for stable isotope analyses of water samples. Isotopes in Environmental and Health Studies.
- Wassenaar et al. (2018): Seeking excellence: An evaluation of 235 international laboratories conducting water isotope analyses by isotope-ratio laser-absorption spectrometry. Rapid Communications in Mass Spectrometry (32), 393-406

Thank you!

