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The problem:

“overset grids.” There have also been recent attempts to use grids based on octahedrons (e.g., 
McGregor, 1996; Purser and Rancic, 1998). A “Fibonacci grid” has also been suggested 
(Swinbank and Purser, 2006).

Grids based on icosahedra offer an attractive framework for simulation of the global 
circulation of the atmosphere; their advantages include almost uniform and quasi-isotropic 
resolution over the sphere. Such grids are termed “geodesic,” because they resemble the geodesic 
domes designed by Buckminster Fuller. Williamson (1968) and Sadourny (1968) simultaneously 
introduced a new approach to more homogeneously discretize the sphere. They constructed grids 
using spherical triangles which are equilateral and nearly equal in area. Because the grid points 
are not regularly  spaced and do not lie in orthogonal rows and columns, alternative finite-
difference schemes are used to discretize the equations. Initial tests using the grid proved 
encouraging, and further studies were carried out. These were reported by  Sadourny  et al. (1968), 
Sadourny and Morel (1969), Sadourny (1969), Williamson (1970), and Masuda (1986).

The grids are constructed from an icosahedron (20 faces and 12 vertices), which is one of 
the five Platonic solids. A conceptually simple scheme for constructing a spherical geodesic grid 
is to divide the edges of the icosahedral faces into equal lengths, create new smaller equilateral 
triangles in the plane, and then project onto the sphere. See Fig. 11.9. One can construct a more 
homogeneous grid by partitioning the spherical equilateral triangles instead. Williamson (1968) 
and Sadourny (1968) use slightly  different techniques to construct their grids. However, both 
begin by partitioning the spherical icosahedral triangle. On these geodesic grids, all but twelve of 
the cells are hexagons. The remaining twelve are pentagons. They are associated with the twelve 
vertices of the original icosahedron.

Williamson (1968) chose the nondivergent shallow water equations to test the new grid. 
He solved the two-dimensional nondivergent vorticity equation
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where !  is relative vorticity, ! = " + f  is absolute vorticity  and !  is the stream function, such 

that

Fig. 11.8: Various ways of discretizing the sphere. Figure made by Bill Skamarock of NCAR.
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Consideration of alternative spatial discretizations:

Priority Requirements:

Lat-Lon Icosahedral-triangles Icosahedral-hexagons Cubed Sphere Yin-Yang

•  Efficient on existing and proposed supercomputer architectures

•  Scales well on massively parallel computers

•  Well suited for cloud (nonhydrostatic) to global scales

•  Capability for local grid refinement and regional domains

•  Conserves at least mass and scalar quantities

Problems with lat-lon coordinate for global models

• Pole singularities require special filtering

• Polar filters do not scale well on massively parallel computers

• Highly anisotropic grid cells at high latitudes
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An Introduction to Numerical Modeling of the Atmosphere

The clustering of points at the pole of traditional
lat-lon grids (left) is a bottleneck to parallel scaling.
Can we use non-orthogonal grids such those on the
right, while retaining the discretisation properties
described in [1]?

The solution:
‘mimetic’ or ‘compatible’ finite element spatial dis-
cretisations that preserve discrete versions of the
continuous vector calculus identities: div(curl)=0
and curl(grad)=0

Example: shallow water:
Prognostic variables velocity u ∈ V1 and depthD ∈
V2. Vorticity ζ ∈ V0 can be used to diagnose a
consistent potential vorticity flux as in [2]

V0︸︷︷︸
Continuous

∇⊥−−→ V1︸︷︷︸
Continuous normals

∇·−→ V2︸︷︷︸
Discontinuous

Figure 1:Top: lowest order function spaces on triangles; bot-
tom: next-to-lowest-order function spaces on quadrilaterals

Gusto: the dynamical core toolkit

Gusto is dynamical core toolkit, built on top of the Firedrake finite element library, which enables rapid
prototyping of algorithms based on the compatible finite element discretisations developed in the Gung Ho
project.

• compatible function spaces dictated by the
linear equations
• stable, accurate advection schemes available
• solves a range of GFD equations
• can be run in different geometries
• includes moist physics schemes

Some snapshots of simulation results can be seen
on the right.

Top left: Potential vorticity from the shallow water flow
over a mountain test case.
Top right: Potential temperature of a falling bubble that
has spread across the bottom of the domain, developing a
Kelvin-Helmholtz instability.
Bottom: Wet equivalent potential temperature and
vertical velocity of a rising thermal in a cloudy
atmosphere.
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Figure 2. The (left) ✓e field contoured every 0.5 K and (right) vertical velocity w field contoured every 2 m s�1, with both fields plotted at t = 1000 s for a simulation of
the moist benchmark case Bryan & Fritsch (2002) representing a thermal rising through a saturated atmosphere. The 320 K contour has been omitted for clarity in the ✓e

field. This simulation is with the k = 0 lowest-order set of spaces, with grid spacing �x = �z = 100 m and a time step of �t = 1 s. These solutions are visibly similar
to those presented in Bryan & Fritsch (2002).

Figure 3. Outputted fields from the k = 1 next-to-lowest degree space simulation at t = 1000 s of the moist benchmark from Bryan & Fritsch (2002). (Left) ✓e with
contours spaced by 0.5 K and (right) vertical velocity w contoured every 2 m s�1. The simulation used grid spacing �x = �z = 100 m and a time step of �t = 1 s.
The 320 K contour has been omitted for clarity in the ✓e field. A second plume can be seen forming at the top of the primary plume.

5. Test Cases

In this section we demonstrate the discretisation detailed in
previous sections through a series of test cases, with some
comparison of the k = 0 and k = 1 configurations of the model.
Two new variants of test cases are presented, featuring a gravity
wave in a saturated atmosphere and a three-dimensional rising
thermal in a saturated atmosphere.

Throughout this section, x and y are the horizontal coordinates
and z is the vertical coordinate. For the two-dimensional tests, r

is given by
r =

p
(x � xc)2 + (z � zc)2, (26)

while for three-dimensional tests it is

r =
p

(x � xc)2 + (y � yc)2 + (z � zc)2. (27)

5.1. Bryan and Fritsch Moist Benchmark

The first demonstration of our discretisation is through the moist
benchmark test case of Bryan & Fritsch (2002), which simulates

a rising thermal through a cloudy atmosphere. The domain is a
vertical slice of width L = 20 km and height H = 10 km. Periodic
boundary conditions are applied at the vertical boundaries, but the
top and bottom boundaries are rigid, so that v · bn = 0 along them.
As in Bryan & Fritsch (2002), we include no rain microphysics
and no Coriolis force.

The initial conditions defined in Bryan & Fritsch (2002)
specify a background state with constant rt = 0.02 kg kg�1 and
constant wet-equivalent potential temperature ✓e = 320 K, which
is defined in (46). Along with these, the background state is
given by the requirements of hydrostatic balance, rv = rsat and
p = 105 Pa at the bottom boundary. The procedure described in
Appendix B.2 allows us to obtain the prognostic variables ✓vd,
⇢d, rv and rc that approximately satisfy these conditions.

The following perturbation is then applied to ✓vd

✓0vd =

⇢
�⇥cos2

�
⇡r
2rc

�
, r < rc,

0, otherwise,
(28)
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Parallel timestepping schemes

Motivation:
There is a limit to parallel speed up from spatial domain decomposition. Adding more processors leads to
increased communication costs.

A solution:
Parallel exponential integrators The solution of
the linear system is

U (t) = e−(t−t0)LU (t0)
Compute the matrix exponential using the
rational approximation

eτLU (t0) ≈
N∑

n=−N

βn
τL + αn

U (t0)

where τ = t− t0, and αn, βn ∈ C are given in []
Writing V = eτLU (t0) for each n we can solve
in parallel :

(τL + αn)V n = βnU (t0)
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h, u and v for the wave benchmark for the linear f-plane
shallow water equations [3]
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left: h at t = 36000s, linear solid body rotation.
right: h at t = 36000s, wave propagation with initial
conditions given by a Gaussian bump in h at north pole.
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