
where K(q) is a non-linear (linear) function of q in the multiscaling

(simple-scaling) case. Equation (2) is a necessary but not sufficient

condition for stochastic self-similarity (or multifractality) to hold, as it

describes the marginal statistics of Qmax as a function of scale A. More

precisely it implies that:

1. Introduction

Over the years, several studies have been carried out to investigate

how the statistics of annual discharge maxima vary with the size of

basins, with diverse findings regarding the observed type of scaling,

especially in cases where the data originated from regions with

significantly different hydroclimatic characteristics. In this context, an

important question arises on how one can effectively conclude on an

approximate type of statistical scaling of the annual discharge maxima,

while accounting for the effects of local rainfall climatology.
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In this work, we aim at answering this question, by investigating the

effect of rainfall climatology on the spatial scaling of maximum

annual floods using daily discharge data from 805 stations located in

different parts of the United Kingdom. To do so, we isolate the effects

of the catchment area and the local rainfall climatology, and examine

how the statistics of the standardized discharge maxima vary with the

basin scale.

2. Scaling of peak annual discharges with area

A. Statistical scale invariance

An attractive approach to model the statistical characteristics of

maximum annual discharges at ungauged locations of a river network,

is to use scale invariance arguments to link them to the statistical

properties of maximum annual discharges measured at gauged

locations within the same statistically homogeneous geographical

region. In this case, one can obtain the statistical properties at

ungauged locations j, as a function of those at gauged locations i:

Q
(j)
max(Aj) =

d
 G(Ai/Aj) Q

(i)
max(Ai) 

where (=d) denotes equality in all finite dimensional distributions, and

G is a random function that depends on the ratio r = Ai / Aj and is

stochastically independent from Q(i)
max(Ai). Equation (1) includes

simple-scaling as a sub-case when G is deterministic. Also, it follows

from equation (1) that the moments E[{Qmax(A)}q] of different orders q

depend on the catchment size A in a log-linear way:

E[{Qmax(A)}
q
]  A

q-K(q)
 

Q
(j)
max(Aj) =

md
 G(Ai/Aj) Q

(i)
max(Ai) 

where (=md) denotes equality in the marginal distributions of Qmax (i.e.,

obtained across independent basins of various areas A), whereas

equation (1) refers to all finite dimensional distributions of the maxima

field (i.e., obtained across all sub-catchments of various areas A of a

basin).

Based on equation (3), a convenient way to distinguish between

multiscaling and simple scaling of annual discharge maxima, is by

studying the form of the moment scaling function K(q), defined as:

K(q) = -logA E[{Q'max(A)}
q
] where Q'max(A) = Qmax (A) / A 

B. Index Flood Method and local rainfall climatology

River discharges for rainfall-triggered flood events increase almost

proportionally with both the drainage area A and the rainfall depth I.

Hence, unless all catchments fall within the same hydrologically

homogeneous geographical region (i.e., in terms of rainfall

accumulations), regressing Qmax solely against A cannot resolve the

variability induced by the different hydroclimatologies and, more

importantly, it may produce biased results in favor of simple scaling.

According to the main assumption of the index flood method, the

discharge maxima at different locations within a statistically

homogeneous geographical region exhibit the same probability

distribution when standardized by their mean, or some other index

discharge. For example, considering that the mean discharge E[Q(j)] at

some location j increases almost proportionally with the annual rainfall

depth, thus, being indicative of the local rainfall climatology, the index

flood method can be written in the form:

Q
(j)
max

E[Q
(j)

]
 =

md
 

Q
(i)
max

E[Q
(i)

]
 

Assuming proportionality of discharges with rainfall intensity and

some power θ (0,1] of the drainage area (i.e., generalized rational

method), if the mean annual rainfall intensity is assumed constant over

the region of interest, then the assumption: E[Q(j)]/E[Q(i)] = (Aj/Ai)
θ

holds in good approximation, and the index flood approach in equation

(5) reduces to a simple-scaling rule of annual discharge maxima with

the drainage area A.

Q
(j)
max =

md
 






Aj

Ai 

θ

 Q
(i)
max 

Evidently, in the most general case when locations i, j exhibit different

hydroclimatic characteristics, as in the case when investigating data

originating from different regions, the index flood method may lead to

more complex types of scaling than the simple scaling rule.

3. Key idea and Data

➢ The main scope of the study is to investigate the effect of rainfall

climatology on the spatial scaling of maximum annual floods using

daily discharge data from 805 stations located in different parts of

the United Kingdom; see Perdios and Langousis (2020).

This was done by studying:

▪ How the mean value of the standardized discharge maxima Q'max =

Qmax/A depends on the catchment area A and the average

precipitation in 30-year climatic periods, hereafter referred to as

SAAR (Standard-period Average Annual Rainfall).

▪ How the distribution of the ratio Qmax/E[Q], also referred to as

index flood ratio or amplification factor, scales with the area A,

along the lines of the index flood concept.

The hydrologic information used originates from NRFA (National

River Flow Archive) and includes:

❑ Daily discharges from 805 catchments with at least 30 years of

recordings.

❑ Catchment size information.

❑ SAAR values in mm.
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Figure 1: Spatial distribution of

SAAR values for the 805

considered catchments across

the United Kingdom.

❑ SAAR values tend to

decrease when moving from

the West to East coast

❑ The observed rainfall

gradient is directly linked to

Gulf Stream and the local

topography.

4. Results – Conclusions

A. Mean value of standardized discharge maxima
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Figure 2: Spatial distribution of

the mean value of the

standardized discharge maxima.

❑ Same pattern as SAAR (see

Figure 1).

❑ Indication of strong linkage

to the local rainfall

climatology.
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Figure 3: (a): Scatterplot

(points) and linear least-squares

(LS) fit (solid line) of the mean

values E[Q'] of the standardized

discharges Q' = Q / A for the 805

considered catchments, with

respect to their corresponding

SAAR values. (b) Same as (a)

but for the means E[Q'max] of the

standardized annual discharge

maxima Q'max = Qmax / A.

1. Standardization of Q and Qmax by the catchment area A is important

for the effects of local rainfall climatology to be revealed, as river

discharges increase with the basin size.

2. In the case when studying the scaling properties of annual

discharge maxima, a simple way to simultaneously isolate the

effects of the area of the basin and the local rainfall characteristics is

to follow the exact version of the index flood method and study

the distribution of the amplification factor γmax = Qmax / E[Q].

B. Scaling of standardized annual maxima and amplification factor.
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Figure 4: Log-log plots of the

empirical moments E[(Q'max)
q] as

a function of the catchment area

A, for different moment orders.

Black solid lines correspond to

least-squares (LS) fits.
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Figure 5: Log-log plots of the

empirical moments E[(γmax)
q] as a

function of the catchment area A, for

different moment orders. Black solid

lines correspond to least-squares

(LS) fits.
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Figure 6: Empirical moment scaling

function K(q) for the standardized

discharge maxima Q'max = Qmax / A

(circles), and the amplification factor

γmax = Qmax / E[Q] (stars).

❑ Log-linearity with the drainage

area A.

❑ K(q) function is non-linear →
indication of significant deviations

from simple scaling.

❑ Observed deviations from simple

scaling can be attributed to the

multifractal structure of actual

rainfields.

❑ Break of log-linearity for spatial

scales below approximately 100

km2 → concurs with the observed

break of scaling in spatial rainfall

❑ K(q) function remains non-linear,

close to that of the standardized

discharge maxima.

Standardized discharge maxima Q'max Amplification factor γmax

Figures 3.a and 3.b indicate that there is a strong statistical linkage

between the mean values of standardized discharges and the local

rainfall climatology. In addition, note that:

(1)

(2)

(3)

(4)

(5)

(6)

It follows from the discussion above, that from a theoretical point of

view, any type of moment scaling analysis of Qmax with A cannot be

conclusive regarding the actual type of scaling of Qmax. This is because

when regressing the moments of Qmax against A, one a priori assumes a

constant mean rainfall intensity field over the region of interest and,

consequently, a simple scaling rule for the annual discharge maxima.
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