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Main Menu  >  GeoGallery  >  Volcanoes  >  Ruapehu  >  Ruapehu

Ruapehu

A surtseyan eruption on May 8,
1971, from Crater Lake at the
summit of Ruapehu volcano in New
Zealand ejects a dark column of ash,
mud, and steam. Individual ejected
blocks can be seen at the margins of
the cloud, trailing cockscomb sprays
of ash and steam. This type of
euption column is typical of
explosions that involve water-
magma interaction.

Type/Process: Magma Meets Water
Volcanic Status: Historical
Image Number: 004-019
Photographer: Peter Otway, 1971
(New Zealand Geological Survey)
Summit Elevation: 2797 meters
Latitude/Longitude: 39.28 S /
175.57 E
Timeframe: Last known eruption
1964 or later
Region: New Zealand to Fiji
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viscous bubbly basalt

small Reynolds number

magma & slurry inclusion = 
a solid porous medium

porosity ~ 0.35 - 0.8

with a cold saturated core

hot surrounding magma 
flashes liquid core to steam

vapour

liquid

flashing front
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Mathematical Model
in vapor region
energy conservation

had been assumed to be stationary at the time scale of the system and therefore the energy
is only transferred by conduction producing

(1� �)⇢mcpm
@T

@t
= (1� �)Kmr2T +Q, (3)

where � is the porosity of magma, csx is the specific heat of substance x, ⇢x is the density
of substance x , t is the time, Kx is the thermal conductivity of substance x and Q is the
interfacial terms at the interface between the magma and the water vapour. In the vapour
energy equation there is also a conduction term but the vapour is flowing through the magma
so the flow of temperature and the pressure changes in the pores have to be considered in
the equation. The vapour energy equation is

⇢vcpv


�
@T

@t
+ u ·rT

�
� �


@p

@t
+ u ·rp

�
= �Kvr2T �Q, (4)

where u is the velocity of the vapour across the steam generation boundary ([?]). Equations
?? and ?? combine to produce the energy conservation equation for the system

(1� �)⇢mcpm
@T

@t
+ ⇢vcpv


�
@T

@t
+ u ·rT

�
�


�
@p

@t
+ u ·rp

�
= Ker2T, (5)

where Ke = �Kv + (1� �)Km.

Mass conservation is also need

�
@⇢v
@t

+r · (⇢vu) = 0. (6)

As well as Darcy’s law which describes a flow of fluid through a porous medium

u = � k

µv
rp (7)

where k is the permeability and µ is the viscosity.

Lastly the relationship between the velocity of the steam generation boundary towards the
centre of the bomb and the velocity of the steam crossing the boundary needs to be con-
sidered. The motion of the steam generation boundary is driven by the heat flux into the
inclusion causing the liquid to vaporise. This forms the following equation for the velocity
of the steam generation boundary

⇢wLṡ = �

K

@T

@r

�+

�
, (8)

where
⇥
K @T

@r

⇤+
� is the net heat flux at the interface and s is the steam generation boundary

at the surface of the inclusion. The amount of water that the steam generation boundary
sweeps must be equivalent to the amount of vapour crossing the steam generation boundary,

[⇢]ṡ =[⇢u]+� (9)
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Drew and Wood, Two Phase Flow Fundamentals, 1985
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2.1 In the hot magma

In the region R2 > r > s(t), we assume there is water and rock present, and that
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where k is the permeability and µ is the viscosity.

Lastly the relationship between the velocity of the steam generation boundary towards the
centre of the bomb and the velocity of the steam crossing the boundary needs to be con-
sidered. The motion of the steam generation boundary is driven by the heat flux into the
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⇢wLṡ = �

K

@T

@r

�+

�
, (8)

where
⇥
K @T

@r

⇤+
� is the net heat flux at the interface and s is the steam generation boundary

at the surface of the inclusion. The amount of water that the steam generation boundary
sweeps must be equivalent to the amount of vapour crossing the steam generation boundary,
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1 Dimensional Model

To create a model for the behaviour of Surtseyan ejecta the relationship between pressure
and temperature needs to be considered. There are two processes occurring that oppose each
other the first is the evaporation of the water in the inclusion causing the pressure to rise
and the second is the vapour escaping through the pores of the magma causing a pressure
drop. The relationship between these two processes determines whether or not the Surtseyan
ejecta will rupture.

Surtseyan ejecta are comprised of three regions the inclusion which is slurry of liquid water
and solid previously ejecta material, the vapour region where the water vapour escapes
through magma bomb and finally the steam generation boundary where the pressure and
the temperature are at saturation. At the steam generation boundary the pressure and
temperature are at saturation and they can be related using the Clausius Clapeyron curve,
equation 1, derived in the appendix B),

psv = p0e
MvL
RT0

[Ts�T0
Ts ] (1)

where psv is the pressure and Ts is the temperature at the boundary s, T0 is the Initial
temperature of the inclusion at the boundary, p0 is the initial pressure of the inclusion at
the boundary, Mv is the molecular mass, L is the latent heat of vaporization and lastly R is
the gas constant.

In the vapour region the temperature (T ), pressure (p) and density of vapour(⇢v) can be
related if it is assumed that water vapour behaves like an ideal gas. This gives the relationship
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RT
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In the system energy is assumed to be conserved. To produce an equation for the conser-
vation of energy in the magma ball both the energy in the magma and the vapour must be
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and the momentum conservation equation for steam is given by Darcy’s Law for
flow in a porous medium,

u = � k

µv
rp . (9)

2.2 In the slurry inclusion

The slurry inclusion is in the region 0 < r < s(t). Here we allow for the compress-
ibility of liquid water in connected pore space. The point-wise energy equation
in the liquid phase is given by eqn. (3). Averaging as above over a representative
elementary volume and adding together the energy equations for liquid water and
solid rock gives the combined energy equation in the slurry inclusion
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where %
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0 = (1 � �)⇢mcpm + �⇢lcpl, ⇢l is the density of liquid water, ul = �vl is

the Darcy velocity of the liquid water, Kel = (1 � �)km + �kl, cpl is the specific
heat of liquid water, and kl is the thermal conductivity of liquid water.

Conservation of mass for liquid water is given by

�
@⇢l

@t
+r · (⇢lul) = 0 (11)

and the momentum conservation equation for liquid is given by Darcy’s Law,

ul = � k

µl
rp . (12)
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1 Dimensional Model

To create a model for the behaviour of Surtseyan ejecta the relationship between pressure
and temperature needs to be considered. There are two processes occurring that oppose each
other the first is the evaporation of the water in the inclusion causing the pressure to rise
and the second is the vapour escaping through the pores of the magma causing a pressure
drop. The relationship between these two processes determines whether or not the Surtseyan
ejecta will rupture.

Surtseyan ejecta are comprised of three regions the inclusion which is slurry of liquid water
and solid previously ejecta material, the vapour region where the water vapour escapes
through magma bomb and finally the steam generation boundary where the pressure and
the temperature are at saturation. At the steam generation boundary the pressure and
temperature are at saturation and they can be related using the Clausius Clapeyron curve,
equation 1, derived in the appendix B),

psv = p0e
MvL
RT0

[Ts�T0
Ts ] (1)

where psv is the pressure and Ts is the temperature at the boundary s, T0 is the Initial
temperature of the inclusion at the boundary, p0 is the initial pressure of the inclusion at
the boundary, Mv is the molecular mass, L is the latent heat of vaporization and lastly R is
the gas constant.

In the vapour region the temperature (T ), pressure (p) and density of vapour(⇢v) can be
related if it is assumed that water vapour behaves like an ideal gas. This gives the relationship

⇢v =
Mvp

RT
. (2)

In the system energy is assumed to be conserved. To produce an equation for the conser-
vation of energy in the magma ball both the energy in the magma and the vapour must be

1

on saturation curve

transform to a moving frame, 
integrate mass, energy across flash front:

in the slurry inclusion, and

@⇢s

@t

����
R

� ṡ
@⇢s

@R
+

@

@R
(⇢sv) = 0

in the hot magma. Integrating these across the flashing front at R = 0 gives the
mass jump condition

ṡ(⇢l � ⇢s)� ⇢lvl + ⇢sv = 0 . (15)

Using this allows us to rewrite equation (14) as

�⇢shsl(v � ṡ) = �⇢lhsl(vl � ṡ) = [KrT ]+� + �(v � vl)p , (16)

where hsl = hs � hl is the latent heat of vaporisation.

The ideal gas law is assumed to apply to the vapour generated, so that for r >

s(t),

⇢s =
pM

RT
(17)

where R = 8.314 J.K�1.mol�1 is the universal gas constant, and M is the molar
mass of water (kg.mol�1).

At the flashing front, pressure and temperature are related by the Clausius-Clapeyron
equation,

p = p
e
0e

Mhsl
RTe

0


T�Te

0
T

�

(18)

where p is the pressure and T is the temperature at the boundary r = s, and T
e
0

and p
e
0 are reference temperature and pressure values for liquid and vapour phases

of water at equilibrium.

These equations (16)–(18), together with equations (10)–(13), form our dimen-
sional model equations. Boundary conditions are that pressure at the surface of
the bomb is atmospheric pressure pa, and there is no flow at the centre of the
inclusion,

p(R2) = pa ,
@p

@r
= 0 at r = 0 .

Also, temperature and pressure are continuous across the flashing front.

Initial conditions are taken to be that at time zero the temperature of the magma
is Tm and the temperature of the inclusion is at boiling point for atmospheric
pressure, Ti. Initial pressures are taken to be pa everywhere.

We now choose rescalings that nondimensionalise our model, and allow us to reduce
the complexity of the coupled equations.
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Using this allows us to rewrite equation (14) as
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where hsl = hs � hl is the latent heat of vaporisation.

The ideal gas law is assumed to apply to the vapour generated, so that for r >

s(t),

⇢s =
pM

RT
(17)

where R = 8.314 J.K�1.mol�1 is the universal gas constant, and M is the molar
mass of water (kg.mol�1).

At the flashing front, pressure and temperature are related by the Clausius-Clapeyron
equation,

p = p
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where p is the pressure and T is the temperature at the boundary r = s, and T
e
0

and p
e
0 are reference temperature and pressure values for liquid and vapour phases

of water at equilibrium.

These equations (16)–(18), together with equations (10)–(13), form our dimen-
sional model equations. Boundary conditions are that pressure at the surface of
the bomb is atmospheric pressure pa, and there is no flow at the centre of the
inclusion,

p(R2) = pa ,
@p

@r
= 0 at r = 0 .

Also, temperature and pressure are continuous across the flashing front.

Initial conditions are taken to be that at time zero the temperature of the magma
is Tm and the temperature of the inclusion is at boiling point for atmospheric
pressure, Ti. Initial pressures are taken to be pa everywhere.

We now choose rescalings that nondimensionalise our model, and allow us to reduce
the complexity of the coupled equations.
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The mass conservation equation (8) becomes after nondimensionalising and sub-
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where the meanings and values of the parameters are given in Table 2. The term
%c = (1� �)⇢mcpm + �⇢scps is dominated by the first term, storage of heat by the
rock, so is well approximated by %c ⇡ 1.4⇥ 106.
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The most significant terms in the above equation give a di↵usion equation for
temperature,
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To summarise, the nondimensional equations describing our reduced model are
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and initial conditions

T = T0 , r < s(0) ; T = 1 , r > s(0) ; p = 1 ; s(0) = R1/R2 .

Pressures in the slurry are equal to the pressure at the flashing front r = s(t).

Further reduction of our model is now possible: in the slurry, temperature di↵usion
is relatively slow, so temperature can be taken to be T0.
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The mass conservation equation (8) becomes after nondimensionalising and sub-
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where the meanings and values of the parameters are given in Table 2. The term
%c = (1� �)⇢mcpm + �⇢scps is dominated by the first term, storage of heat by the
rock, so is well approximated by %c ⇡ 1.4⇥ 106.
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The most significant terms in the above equation give a di↵usion equation for
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To summarise, the nondimensional equations describing our reduced model are
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To summarise, the nondimensional equations describing our reduced model are
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and initial conditions

T = T0 , r < s(0) ; T = 1 , r > s(0) ; p = 1 ; s(0) = R1/R2 .

Pressures in the slurry are equal to the pressure at the flashing front r = s(t).

Further reduction of our model is now possible: in the slurry, temperature di↵usion
is relatively slow, so temperature can be taken to be T0.
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where the meanings and values of the parameters are given in Table 2. The term
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The most significant terms in the above equation give a di↵usion equation for
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ṡ = ✏4⇢s
@p

@r
= � 1

St


@T

@r

�+

�
, r = s(t) , (32)

p = exp


H

✓
T � T0

T

◆�
, r = s(t) (33)

@T

@t
=

�5

r2

@

@r

✓
r
2@T

@r

◆
, r > s(t) (34)

p = ⇢sT , r > s(t) , (35)

@⇢s

@t
=

✏5

r2

@

@r

✓
r
2
⇢s
@p

@r

◆
, r > s(t) , (36)

(37)

with boundary conditions

p = 1 , r = 1 ;
@T

@r
= 0 , r = 0 ; T = T0 , r = 1 ;

14

The mass conservation equation (8) becomes after nondimensionalising and sub-
stituting for v,

@⇢s

@t
= ✏5r · (⇢srp) .

The energy equation (7) takes the nondimensional form

@T

@t
+ �2⇢sv

@T

@r
� �3

@p

@t
� �4v

@p

@r
=

�5

r2

@

@r

✓
r
2@T

@r

◆
, (28)

where the meanings and values of the parameters are given in Table 2. The term
%c = (1� �)⇢mcpm + �⇢scps is dominated by the first term, storage of heat by the
rock, so is well approximated by %c ⇡ 1.4⇥ 106.

Using nondimensional Darcy’s law to replace v gives

@T

@t
� ✏4�2⇢s

@p

@r

@T

@r
� �3

@p

@t
+ �4✏4

✓
@p

@r

◆2

=
�5

r2

@

@r

✓
r
2@T

@r

◆
. (29)

The most significant terms in the above equation give a di↵usion equation for
temperature,

@T

@t
=

�5

r2

@

@r

✓
r
2@T

@r

◆
. (30)

To summarise, the nondimensional equations describing our reduced model are
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and initial conditions

T = T0 , r < s(0) ; T = 1 , r > s(0) ; p = 1 ; s(0) = R1/R2 .

Pressures in the slurry are equal to the pressure at the flashing front r = s(t).

Further reduction of our model is now possible: in the slurry, temperature di↵usion
is relatively slow, so temperature can be taken to be T0.
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where the meanings and values of the parameters are given in Table 2. The term
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The most significant terms in the above equation give a di↵usion equation for
temperature,

@T

@t
=

�5

r2

@

@r

✓
r
2@T

@r

◆
. (30)

To summarise, the nondimensional equations describing our reduced model are
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To summarise, the nondimensional equations describing our reduced model are
now

@T

@t
=

✏3

r2

@

@r

✓
r
2@T

@r

◆
, r < s(t) , (31)
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and initial conditions

T = T0 , r < s(0) ; T = 1 , r > s(0) ; p = 1 ; s(0) = R1/R2 .

Pressures in the slurry are equal to the pressure at the flashing front r = s(t).

Further reduction of our model is now possible: in the slurry, temperature di↵usion
is relatively slow, so temperature can be taken to be T0.
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In the slurry, we use the new radial coordinate ⇣, where

⇣ =
r

s

and in the hot magma and vapour region we use a radial coordinate ⇠ that increases
as r increases,

⇠ =
r � s

1� s

so that both regions are transformed to the region [0, 1], and ⇣ = 1 and ⇠ = 0
correspond to the now stationary flashing front.

The chain rule says that in the slurry,
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s

◆
@f(⇣, t)

@⇣
+

@f(⇣, t)

@t
,

and in the surrounding magma,

@f(r, t)

@r
=

✓
1

1� s

◆
@f(⇠, t)

@⇠
,

@f(r, t)

@t
= ṡ
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sṡ+ 2✏3
s2⇣

◆
, (42)

VT =
(⇠ � 1)ṡ
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Numerical solutions
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Then use method of lines. Upwind advection terms. 
Transform to non-uniform mesh, to resolve thermal 

boundary layer.



Numerical solutions

D =
pchvl⇢l�kR2

1

Kµv(Tm � T0)�mR2
2

(19)

E =
R1RTm�⇢l
R2M�mpc

(20)

The key parameters controlling solution behaviour are di↵usivity D and the point source
flux E.

Typical values for parameters used here are listed in Table (1). Note that as R1 in-

Table 1: Physical constants used in numerical solutions.

Parameter Value Units

pc 2⇥ 106 Pa
hvl 2⇥ 106 J/kg
⇢l 1000 kg/m3

k 10�14 m2

K 2 W/m/K
µv 3⇥ 10�5 Pa.s
M 18⇥ 10�3 kg/mol
R 8.314 J/K/mol
Tm 1300 K
T0 300 K
�m 0.4
� 0.4
R1 0.001 m
R2 0.1 m

creases, the flux E increases at origin. But dimensionless di↵usivity D also increases as
R1 increases, so it is di�cult to deduce pressure behaviour at origin.

Numerical solutions reveal an interesting feature - the pressure at the surface of the lapillus
quickly equilibrates, as illustrated in Fig. (1). This rapid equilibration is observed over a
wide range of parameters.

The rapid stabilisation of pressure at the surface of the lapillus means that the steady-
state solution for pressure with the source of vapor never turning o↵ at r = ✏ provides
a formula for the correct maximum value of pressure achieved there. A steady state
everywhere is not typically achieved by the time t = 1, as is evident in Fig. (1), but if the
vapor source were to continue for long enough, steady state would be achieved and the
value of pressure at r = ✏ will be the same since it rapidly reaches its stable value.

7

k is 

m2
1cm inclusion
10cm bomb
moving flash front
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P rise: steam flux prescribed
P fall: T gradient easing off
P fall: decreasing slurry area



P rise: steam flux prescribed
P fall: T gradient easing off
P fall: decreasing slurry area

T~1.0 in magma
T~0.3 at flash
initial T gradient: unbounded?



numerical convergence
varying smallest mesh size and # mesh points
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Figure 8: The maximum pressure at the flashing front, and the time at which
this maximum is achieved, versus mesh size, with di↵erent lines for di↵erent total
numbers of mesh points. Pressure is dimensionless, but is e↵ectively in bars. The
initial conditions are step functions in temperature and pressure. The smallest
mesh size is initially set to the dimensionless value r = 10�4, then divided by the
values 4, 16, 64, 256, and 1024. The number of mesh points varies from 200 to
3200 in the magma, with values in the slurry set to half of the magma values. The
maximum pressure increases as mesh size decreases, and as the number of mesh
points increases. Parameter values are as listed in Table (1), except that here
k = 10�12.
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Thermal Boundary Layer

3.4 Thermal Boundary Layers

In the magma and in the slurry, thermal di↵usivity ⇠ 0.002 is smaller that the
order one nonlinear di↵usivity of pressure given by ✏5p ⇠ 1. So thermal boundary
layer solutions are useful for determining the temperature gradients at the flash
front.

In the magma, we move to an inner region described by a radial coordinate � given
by r = ✏ +

p
�5�, that is close to the flashing front that starts at ✏ = R2/R1, at

times that are early enough to ignore movement of the flashing front.

Then the temperature equation in the magma in this inner region becomes

Tt =
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p
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@

@�


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�5�)

2@T
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�
.

Then considering the limit �5 ! 0, and taking the inner solution valid for
p
�5� ⌧ ✏, we have the boundary layer equation

Tt = T�� , (40)

with boundary conditions T (0, t) = Tf and T ! 1 as � ! 1. Here, the tempera-
ture at the flashing front Tf ⇠ 0.4 does vary between 0.38 and 0.42 as the pressure
rises and falls again. We ignore this variation compared to the outer solution T = 1
in the rest of the magma, away from the boundary layer.

This boundary layer equation admits a similarity solution. Considering the simi-
larity variable ⌘ = �

2
/t, the partial di↵erential equation (40) becomes an ordinary

di↵erential equation

4T⌘⌘ +
2

⌘
T⌘ + T⌘ = 0 .

This is first order in T⌘, and can be integrated twice to obtain the solution

T = (1� Tf ) erf
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p
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+ Tf , (41)

where

erf(x) =
2
p
⇡

Z
x

0

e
�u

2
du ,

and the constants have been chosen to match the flash temperature Tf ⇠ 0.4 when
� = 0 and the outer solution T = 1 as t ! 0.

This inner solution provides the value of the temperature gradient at the flashing
front, on the magma side, as
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,
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Figure 2: Simulated temperatures (symbols) in the slurry inclusion, and in the
magma, plotted against the similarity variable ⌘. Also shown are theoretical simi-
larity solutions (curves) for extremal values of the flash temperature. The flashing
front is at ⌘ = 0. Computations reach ⌘ values of order 106.

4 Freezing the moving boundary

Numerical solutions are helped by freezing the moving boundary r = s(t) between
slurry and vapour, using two Landau transformations [7, 8], one for each region.
In the slurry, we use the new radial coordinate ⇣, where

⇣ =
r

s

and in the hot magma and vapour region we use a radial coordinate ⇠ that increases
as r increases,

⇠ =
r � s

1� s

so that both regions are transformed to the region [0, 1], and ⇣ = 1 and ⇠ = 0
correspond to the now stationary flashing front.

The chain rule says that in the slurry,
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s

◆
@f(⇣, t)

@⇣
+

@f(⇣, t)

@t
,

and in the surrounding magma,
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The model equations in the new coordinates become (dropping the subscript on
%s),
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Data - bomb samples

permeability as a function of porosity, with all other parameter values fixed at the
values given in Table (1). Given the convergence results in the previous subsection,
the number of mesh points is set to m = 400 and the smallest mesh size is set to
the dimensionless value r = 10�6.

The resulting maximum pressures simulated are given in Fig. (12) versus perme-
ability, together with a horizontal dashed line at a typical value for tensile strength
of rock at 20 bara. The implication of these results is that Surtseyan bombs with
a permeability less than about 10�12.5 should fragment due to the pressures de-
veloped at very small times due to flashing of liquid in the enclosed slurry. This
is broadly consistent with the measured values of permeability in intact bombs
shown in Fig. (11), which all lie at or above this value of permeability.
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Figure 11: The log of permeability plotted against porosity, as measured in samples
of Surtseyan ejecta, together with a best fit straight line.

The other parameter of importance is the ratio of the size R1 of the slurry inclusion
to the size R2 of the magma bomb containing it. The sensitivity of the maximum
pressure to varying sizes is explored in the simulated results shown in Fig. (13).
These results indicate that the simulated maximum pressures are not very sensitive
to the size of the inclusion, with variations  2bars, compared to variations of 4-8
bars as the permeabilities and porosities are varied. Furthermore, it is only the
very smallest of inclusions that give clear reductions in the maximum pressure
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pressure to varying sizes is explored in the simulated results shown in Fig. (13).
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Figure 12: The maximum pressure simulated, using log k = 6.33� � 14.1 and
m = 400, with step initial temperatures and pressure and a smallest dimensionless
mesh size r = 10�6. The dashed line shows a nominal value for the tensile strength
of volcanic rock.
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permeability as a function of porosity, with all other parameter values fixed at the
values given in Table (1). Given the convergence results in the previous subsection,
the number of mesh points is set to m = 400 and the smallest mesh size is set to
the dimensionless value r = 10�6.

The resulting maximum pressures simulated are given in Fig. (12) versus perme-
ability, together with a horizontal dashed line at a typical value for tensile strength
of rock at 20 bara. The implication of these results is that Surtseyan bombs with
a permeability less than about 10�12.5 should fragment due to the pressures de-
veloped at very small times due to flashing of liquid in the enclosed slurry. This
is broadly consistent with the measured values of permeability in intact bombs
shown in Fig. (11), which all lie at or above this value of permeability.
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Figure 11: The log of permeability plotted against porosity, as measured in samples
of Surtseyan ejecta, together with a best fit straight line.

The other parameter of importance is the ratio of the size R1 of the slurry inclusion
to the size R2 of the magma bomb containing it. The sensitivity of the maximum
pressure to varying sizes is explored in the simulated results shown in Fig. (13).
These results indicate that the simulated maximum pressures are not very sensitive
to the size of the inclusion, with variations  2bars, compared to variations of 4-8
bars as the permeabilities and porosities are varied. Furthermore, it is only the
very smallest of inclusions that give clear reductions in the maximum pressure
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Figure 12: The maximum pressure simulated, using log k = 6.33� � 14.1 and
m = 400, with step initial temperatures and pressure and a smallest dimensionless
mesh size r = 10�6. The dashed line shows a nominal value for the tensile strength
of volcanic rock.
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 => fragmentation criterion
pressure, temperature: 
different timescales

initial T gradient is unbounded, 
approximated by similarity erf

hope to use steady state pressure solution to 
bound the maximum pressure 





Thank you!


